Doping of nickel into AgGaS2 yields a new absorption band, at a wavelength longer than the intrinsic absorption band of the AgGaS2 host. The doped nickel forms an electron donor level in a forbidden band of AgGaS2 . The nickel-doped AgGaS2 with rhodium co-catalyst shows photocatalytic activity for sacrificial H2 evolution under the light of up to 760 nm due to the transition from the electron donor level consisting of Ni(2+) to the conduction band of AgGaS2 . Apparent quantum yields for the sacrificial H2 evolution at 540-620 nm are about 1 %. Moreover, the nickel-doped AgGa0.75 In0.25 S2 also responds to near-IR light, up to 900 nm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.201500540 | DOI Listing |
Small
December 2024
Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi, 830011, China.
Infrared nonlinear optical (NLO) crystal materials exert a crucial role in laser technology, which is extensively utilized in the fields of medical laser, long-distance laser communication, infrared laser guidance, etc. Currently, the commercially available infrared NLO crystals are diamond-like structural crystals AgGaQ (Q = S, Se) and ZnGeP. However, their applications are significantly limited owing to their inherent drawbacks, such as low laser damage thresholds and narrow band gaps.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.
Strong polar molecular cages have recently emerged as novel functional building units for high-performance infrared nonlinear optical (IR NLO) crystals. However, these highly polar molecular cages often arrange themselves in a way that cancels out their polarity, leading to a more energetically stable state. As a result, most cage crystal formations tend to crystallize in centrosymmetric space groups, which conflicts with the primary requirement for NLO crystals.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
Luminescence color tuning of less toxic I-III-VI-based quantum dots (QDs) has been intensively investigated for application in wide-color-gamut displays. However, the emission peaks of these multinary QDs are relatively broad in the blue-light region compared to those in the green and red regions. Here, we report the synthesis of AgGaS (AGS) QDs that show a narrow blue emission peak through nonstoichiometry control and surface defect engineering.
View Article and Find Full Text PDFSmall
December 2024
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
Tailoring the optoelectronic characteristics of colloidal quantum dots (QDs) by constructing a core/shell structure offers the potential to achieve high-performing solution-processed photoelectric conversion and information processing applications. In this work, the direct growth of wurtzite ternary AgInS (AIS) shell on eco-friendly AgGaS (AGS) core QDs is realized, giving rise to broadened visible light absorption, prolonged exciton lifetime and enhanced photoluminescence quantum yield (PLQY). Ultrafast transient absorption spectroscopy demonstrats that the photoinduced carrier separation and transfer kinetics of AGS QDs are significantly optimized following the AIS shell coating.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!