Nonviral gene transfer by ultrasound-targeted microbubble destruction (UTMD) is an promising technique for RNA interference (RNAi) therapy. Targeting silence survivin gene may provide an important therapeutic option for patients with ovarian cancer. However, UTMD mediated RNAi therapy typically uses nontargeted microbubbles with suboptimal gene transfection efficiency. In this work, a LHRHa targeted microbubble agent and recombinant expression plasmid of shRNA targeting survivin gene (pshRNA survivin) were constructed for UTMD mediated pshRNA survivin therapy in ovarian cancer A2780/DDP cells that express LHRH receptors. The targeted microbubbles (TMBs) mixed with the pshRNA survivin were added to cultured ovarian cancer cells followed by ultrasound exposure (1 MHz, 0.5 W/cm(2)) for 30 s. After transfection for 48 h, the expression of survivin mRNA and protein were (0.36 ± 0.036) and (0.05 ± 0.02), respectively. The cell proliferation inhibitory rates at 24, 48, and 72 h after treatment are (42.08 ± 3.20)%, (54.60 ± 1.02)%, and (74.25 ± 2.14)%, respectively, and the apoptosis rate was (28.99 ± 2.70)%. The expression of apoptosis related protein caspase-9 and caspase-3 were (0.95 ± 0.09) and (2.6 ± 0.21). In comparison with the other treatment groups, ultrasound mediation of targeted microbubbles yielded higher RNAi efficiency and higher cell apoptosis rate and cell proliferation inhibitory rate (p < 0.05). Our experiment verifies the hypothesis that ultrasound mediation of targeted microbubbles will enhance RNAi efficiency in ovarian cancer cells. This novel method for RNA interference represents a powerful, promising no viral technology that can be used in the tumor gene therapy and research.

Download full-text PDF

Source
http://dx.doi.org/10.1021/mp500835zDOI Listing

Publication Analysis

Top Keywords

ovarian cancer
20
targeted microbubbles
16
survivin gene
12
pshrna survivin
12
cancer a2780/ddp
8
a2780/ddp cells
8
rna interference
8
rnai therapy
8
utmd mediated
8
cancer cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!