For many years, developing hematopoietic cells have been strictly compartmentalized into a rare population of multi-potent self-renewing hematopoietic stem cells (HSC), multi-potent hematopoietic progenitor cells (MPP) that are undergoing commitment to particular lineage fates, and recognizable precursor cells that mature towards functional blood and immune cells. A single route to each end-cell type is prescribed in the "classical" model for the architecture of hematopoiesis. Recent findings have led to the viewpoint that HSCs and MPPs are more versatile than previously thought. Underlying this are multiple routes to a particular fate and cells having clandestine fate options even when they have progressed some way along a pathway. The primary role of cytokines during hematopoiesis has long been seen to be regulation of the survival and proliferation of developing hematopoietic cells. Some cytokines now clearly have instructive actions on cell-fate decisions. All this leads to a new way of viewing hematopoiesis whereby versatile HSC and MPP are directed towards lineage outcomes via cytokine regulated cell-fate decisions. This means greater flexibility to the shaping of hematopoiesis.

Download full-text PDF

Source
http://dx.doi.org/10.3109/10408363.2015.1021412DOI Listing

Publication Analysis

Top Keywords

cells
8
progenitor cells
8
instructive actions
8
cytokines hematopoiesis
8
developing hematopoietic
8
hematopoietic cells
8
cell-fate decisions
8
hematopoiesis
5
versatility stem
4
stem progenitor
4

Similar Publications

A Bioabsorbable Implant Seeded with Adipose-Derived Stem Cells for Adipose Regeneration.

Tissue Eng Part A

January 2025

Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

Adipose tissue engineering requires effective strategies for regenerating adipose tissue, with adipose-derived stem cells (ASCs) being favored due to their robust self-renewal capacity and multipotent differentiation potential. In this study, the efficacy of poly-L-lactic acid (PLLA) mesh containing collagen sponge (CS), seeded with ASCs to promote adipose tissue formation, was investigated. PLLA-CS implants seeded with GFP-positive ASCs were inserted at high concentration (1 × 10 cells/implant, H-ASC) and low concentration (1 × 10 cells/implant, L-ASC), as were unseeded controls.

View Article and Find Full Text PDF

Aluminum Induces Neurotoxicity through the MicroRNA-98-5p/Insulin-like Growth Factor 2 Axis.

ACS Chem Neurosci

January 2025

Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.

Aluminum is a well-known and widely distributed environmental neurotoxin. This study aimed to investigate the effect of miR-98-5p targeting insulin-like growth factor 2 (IGF2) on aluminum neurotoxicity. Thirty-two Sprague-Dawley rats were randomly divided into four groups and administered 0, 10, 20, and 40 μmol/kg maltol aluminum [Al(mal)], respectively.

View Article and Find Full Text PDF

Scaffolds made from cartilage extracellular matrix are promising materials for articular cartilage repair, attributed to their intrinsic bioactivity that may promote chondrogenesis. While several cartilage matrix-based scaffolds have supported chondrogenesis and/or , it remains a challenge to balance the biological response (e.g.

View Article and Find Full Text PDF

In pediatric hematopoietic cell transplantation (HCT) recipients, transplanted donor cells may need to function far beyond normal human lifespan. Here, we investigated the risk of clonal hematopoiesis (CH) in 144 pediatric long-term HCT survivors and 258 non-transplanted controls. CH was detected in 16% of HCT recipients and 8% of controls, at variant allele frequencies (VAFs) of 0.

View Article and Find Full Text PDF

Single-nucleus RNA sequencing (snRNA-seq), an alternative to single-cell RNA sequencing (scRNA-seq), encounters technical challenges in obtaining high-quality nuclei and RNA, persistently hindering its applications. Here, we present a robust technique for isolating nuclei across various tissue types, remarkably enhancing snRNA-seq data quality. Employing this approach, we comprehensively characterize the depot-dependent cellular dynamics of various cell types underlying mouse adipose tissue remodeling during obesity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!