Brønsted Acid-Catalyzed Cascade Reactions Involving 1,2-Indole Migration.

Chemistry

Área de Química Orgánica, Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001-Burgos (Spain).

Published: September 2015

A cascade reaction of indoles with propargylic diols involving an unprecedented metal-free 1,2-indole migration onto an alkyne was carried out. DFT calculations support a mechanism consisting of a concerted nucleophilic attack of the indole nucleus with loss of water, followed by the 1,2-migration and subsequent Nazarov cyclization. This Brønsted acid-catalyzed protocol affords indole-functionalized benzofulvene derivatives in high yields.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201502174DOI Listing

Publication Analysis

Top Keywords

brønsted acid-catalyzed
8
12-indole migration
8
acid-catalyzed cascade
4
cascade reactions
4
reactions involving
4
involving 12-indole
4
migration cascade
4
cascade reaction
4
reaction indoles
4
indoles propargylic
4

Similar Publications

Background: Several chemical studies described the physiological efficacy of 1,4- dihydropyridines (DHPs). DHPs bind to specific sites on the α1 subunit of L-type calcium channels, where they demonstrate a more pronounced inhibition of Ca2+ influx in vascular smooth muscle compared to myocardial tissue. This selective inhibition is the basis for their preferential vasodilatory action on peripheral and coronary arteries, a characteristic that underlies their therapeutic utility in managing hypertension and angina.

View Article and Find Full Text PDF

Preparation of Robust, Antireflective and Superhydrophobic Hierarchical Coatings on PMMA Substrates via Mechanical Locking and Chemical Bonding.

ACS Appl Mater Interfaces

January 2025

Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Antireflection (AR) coatings with mechanical robustness and superhydrophobic properties have wide potential applications in optical, electronic, and automotive fields. However, the fabrication of large-sized, robust, and multifunctional AR coatings on plastic/polymer substrates has been a challenging problem. In this study, we developed a bottom-up approach to produce mechanically robust, enhanced transmittance, and superhydrophobic coatings on poly(methyl methacrylate) (PMMA) substrate.

View Article and Find Full Text PDF

The present study reveals an unexpected anomaly observed in the acid-catalyzed hydrolysis of the 5,6-O-isopropylidene group in 3-O-protected D-gluco- and D-allofuranose derivatives. Although the removal of the 5,6-O-isopropylidene protecting group is typically rapid and quantitative under acidic conditions, an unexpected inhibition of this reaction is observed for the two C3-epimers, 3-O-imidazole sulfonyl moiety. X-ray data show a two-faced imidazole ring orientation in the crystal, while solution state NOE data reveal a critical interaction type between the isopropylidene and the imidazole rings.

View Article and Find Full Text PDF

Herein, we present the enantioselective synthesis of 2,3-dihydro-4-quinolones bearing chiral tetrasubstituted carbons from isatins and 2'-aminoacetophenones. The transformation is mediated by a chiral phosphoric acid catalyst and proceeds via an generated ketimine and subsequent enantioselective intramolecular cyclization. The methodology features a broad scope and functional group tolerance with yields and enantioselectivities of up to 99% and 98% ee.

View Article and Find Full Text PDF

Levoglucosenone is an important platform chemical and the principal product of acid-catalyzed cellulose pyrolysis, formed through several intermediates including levoglucosan. An acid-catalyzed redox isomerization of substituted 6,8-dioxabicyclo[3.2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!