Contrasting PCB bioaccumulation patterns among Lake Huron lake trout reflect basin-specific ecology.

Environ Toxicol Chem

Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada.

Published: January 2016

This study collected multiple age classes of lake trout from Lake Huron's Main Basin, Georgian Bay, and North Channel regions to compare and contrast top predator polychlorinated biphenyl (PCB) bioaccumulation patterns in separate compartments of the same ecosystem. Sum PCB concentrations were highest for Main Basin (260 ± 24.9 ng g(-1) wet wt) fish, followed by Georgian Bay (74.6 ± 16.2 ng g(-1) ) and North Channel (42.0 ± 3.3 ng g(-1)) fish. Discriminant functions analysis of lake trout PCB profiles and stable carbon (δ(13)C) and nitrogen (δ(15)N) isotope values clearly distinguished fish by location, indicating high degrees of basin fidelity throughout their lifetimes in addition to highly contrasting PCB bioaccumulation profiles. These unique profiles were not attributable to significant differences in lake trout lipid contents (p = 0.856) or trophic position (δ(15)N; p = 0.334), with rainbow smelt representing the primary prey across the basins. Furthermore, significant differences were observed among the basins for the relationships between PCB biomagnification factors and hydrophobicity. An empirical model for predicting PCB biomagnification in Lake Huron lake trout indicated that basin-specific population growth rates and prey abundances were significant for explaining these contrasting patterns of PCB bioaccumulation. The results of the present study are fundamental for understanding the role of ecology in legacy persistent organic pollutant (POP) bioaccumulation. Specifically, ecosystem characteristics such as prey abundances, foraging ecology, and ultimately consumer growth can regulate the variability of legacy POP bioaccumulation as observed within and among a wide range of freshwater ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1002/etc.3179DOI Listing

Publication Analysis

Top Keywords

lake trout
20
pcb bioaccumulation
16
contrasting pcb
8
bioaccumulation patterns
8
lake
8
lake huron
8
huron lake
8
main basin
8
georgian bay
8
north channel
8

Similar Publications

Fish reproductive phenology shifts with increasing temperature and year.

Biol Lett

January 2025

Department of Forestry and Natural Resources, Purdue University, Forestry Building, 195 Marsteller Street, West Lafayette, IN 47907, USA.

Temperate fishes often spawn in response to environmental cues, such as temperature, thereby facilitating larval emergence concurrent with suitable biotic and abiotic conditions, such as plankton blooms. Climatic changes may alter the reproductive phenology of spring- and autumn-spawning freshwater fish populations. Such effects may depend on the sensitivity of reproductive phenology to ambient temperatures.

View Article and Find Full Text PDF

Due to their involvement in pathogen-mediated immune responses, the hypervariable genes of the Major Histocompatibility Complex (MHC) have become a paradigm for investigating the evolution and maintenance of genetic (adaptive) diversity, contextually providing insight into the viability of wild populations, which is meaningful for conservation. Here, we provide the first preliminary characterization of MHC polymorphism and evolution in trouts from Albania, a known hotspot of Salmonid diversity harboring ecologically and phylogenetically distinct native (threatened) taxa. Overall, 36 trout-including Lake Ohrid-endemic and , and both riverine and lacustrine native brown trout (the complex) from the Drin-Skadar drainage-were genotyped at the MHC- locus through next-generation amplicon sequencing.

View Article and Find Full Text PDF

-(1,3-Dimethylbutyl)-'-phenyl--phenylenediamine-quinone (6PPD-Q) is a rubber-tire derivative which leaches into surface waters from roadway runoff, from tire particles and has been identified as a possible driver of urban runoff mortality syndrome in coho salmon. Sensitivity to this toxicant is highly variable across fish species and life stages. With environmental concentrations meeting or exceeding toxicity thresholds in sensitive fishes, the potential for ecologically relevant effects is significant.

View Article and Find Full Text PDF

Intraspecific variation is important for species' long-term persistence in changing environments. Conservation strategies targeting intraspecific variation often rely on the identification of management or policy units below the species level based on biological differences among populations. To identify management units, this paper examines intraspecific divergence of Lake Trout (Salvelinus namaycush) in Great Slave Lake (GSL), Canada, using low-coverage whole-genome sequencing data.

View Article and Find Full Text PDF

The evolution of adaptive phenotypic divergence requires heritable genetic variation. However, it is underappreciated that trait heritability is molded by developmental processes interacting with the environment. We hypothesized that the genetic architecture of divergent functional traits was dependent on age and foraging environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!