The relation between brain uptake of radiolabeled n-isopropyl-p-iodoamphetamine [( 123I]IMP) and serotonin re-uptake sites was studied in vivo by lesioning serotonergic nerve endings. The reduction of brain serotonin demonstrated the effectiveness of the procedure. Accumulation of radioactivity/g brain tissue was higher in the lesioned than in the sham-operated rats. This was explained by the loss of body weight of the lesioned animals, allowing an increased distribution to the brain. These results demonstrate that the in vivo distribution and binding of [123I]IMP in the brain is not limited to the specific serotonin re-uptake sites on nerve endings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0883-2897(89)90157-8DOI Listing

Publication Analysis

Top Keywords

brain uptake
8
serotonin re-uptake
8
re-uptake sites
8
nerve endings
8
brain
6
serotonergic denervation
4
denervation reduce
4
reduce brain
4
uptake n-isopropyl-p-[123i]iodoamphetamine
4
n-isopropyl-p-[123i]iodoamphetamine vivo
4

Similar Publications

As the main inhibitory neurotransmission system, the GABAergic system poses an interesting yet underutilized target for molecular brain imaging. While PET imaging of postsynaptic GABAergic neurons has been accomplished using radiolabeled benzodiazepines targeting the GABA receptor, the development of presynaptic radioligands targeting GABA transporter 1 (GAT1) has been unsuccessful thus far. Therefore, we developed a novel GAT1-addressing radioligand and investigated its applicability as a PET tracer in rodents.

View Article and Find Full Text PDF

The fate mapping technique is essential for understanding how cells differentiate and organize into complex structures. Various methods are used in fate mapping, including dye injections, genetic labeling (e.g.

View Article and Find Full Text PDF

Introduction: This research is focused on early detection of Alzheimer's disease (AD) using a multiscale feature fusion framework, combining biomarkers from memory, vision, and speech regions extracted from magnetic resonance imaging and positron emission tomography images.

Methods: Using 2D gray level co-occurrence matrix (2D-GLCM) texture features, volume, standardized uptake value ratios (SUVR), and obesity from different neuroimaging modalities, the study applies various classifiers, demonstrating a feature importance analysis in each region of interest. The research employs four classifiers, namely linear support vector machine, linear discriminant analysis, logistic regression (LR), and logistic regression with stochastic gradient descent (LRSGD) classifiers, to determine feature importance, leading to subsequent validation using a probabilistic neural network classifier.

View Article and Find Full Text PDF

Drug delivery for epilepsy treatment faces enormous challenges, where the sole focus on enhancing the ability of drugs to penetrate the blood-brain barrier (BBB) through ligand modification is insufficient because of the absence of seizure-specific drug accumulation. In this study, an amphipathic drug carrier with a glucose transporter (GLUT)-targeting capability was synthesised by conjugating 2-deoxy-2-amino-D-glucose (2-DG) to the model carrier DSPE-PEG. A 2-DG-modified nano drug delivery system (NDDS) possessing robust stability and favourable biocompatibility was then fabricated using the nanoprecipitation method.

View Article and Find Full Text PDF

Metal-Phenolic Nanomedicines Targeting Fatty Acid Metabolic Reprogramming to Overcome Immunosuppression in Radiometabolic Cancer Therapy.

ACS Appl Mater Interfaces

January 2025

Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China.

Radiation therapy (RT) is a prevalent cancer treatment; however, its therapeutic outcomes are frequently impeded by tumor radioresistance, largely attributed to metabolic reprogramming characterized by increased fatty acid uptake and oxidation. To overcome this limitation, we developed polyphenol-metal coordination polymer (PPWQ), a novel nanoradiotherapy sensitizer specifically designed to regulate fatty acid metabolism and improve RT efficacy. These nanoparticles (NPs) utilize a metal-phenolic network (MPN) to integrate tungsten ions (W), quercetin (QR), and a PD-L1-blocking peptide within a PEG-polyphenol scaffold.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!