The relation between brain uptake of radiolabeled n-isopropyl-p-iodoamphetamine [( 123I]IMP) and serotonin re-uptake sites was studied in vivo by lesioning serotonergic nerve endings. The reduction of brain serotonin demonstrated the effectiveness of the procedure. Accumulation of radioactivity/g brain tissue was higher in the lesioned than in the sham-operated rats. This was explained by the loss of body weight of the lesioned animals, allowing an increased distribution to the brain. These results demonstrate that the in vivo distribution and binding of [123I]IMP in the brain is not limited to the specific serotonin re-uptake sites on nerve endings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0883-2897(89)90157-8 | DOI Listing |
ACS Chem Neurosci
January 2025
Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, 6200 MD Maastricht, The Netherlands.
As the main inhibitory neurotransmission system, the GABAergic system poses an interesting yet underutilized target for molecular brain imaging. While PET imaging of postsynaptic GABAergic neurons has been accomplished using radiolabeled benzodiazepines targeting the GABA receptor, the development of presynaptic radioligands targeting GABA transporter 1 (GAT1) has been unsuccessful thus far. Therefore, we developed a novel GAT1-addressing radioligand and investigated its applicability as a PET tracer in rodents.
View Article and Find Full Text PDFBio Protoc
January 2025
Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
The fate mapping technique is essential for understanding how cells differentiate and organize into complex structures. Various methods are used in fate mapping, including dye injections, genetic labeling (e.g.
View Article and Find Full Text PDFDigit Biomark
December 2024
Electrical and Computer Engineering, Western Michigan University, Kalamazoo, MI, USA.
Introduction: This research is focused on early detection of Alzheimer's disease (AD) using a multiscale feature fusion framework, combining biomarkers from memory, vision, and speech regions extracted from magnetic resonance imaging and positron emission tomography images.
Methods: Using 2D gray level co-occurrence matrix (2D-GLCM) texture features, volume, standardized uptake value ratios (SUVR), and obesity from different neuroimaging modalities, the study applies various classifiers, demonstrating a feature importance analysis in each region of interest. The research employs four classifiers, namely linear support vector machine, linear discriminant analysis, logistic regression (LR), and logistic regression with stochastic gradient descent (LRSGD) classifiers, to determine feature importance, leading to subsequent validation using a probabilistic neural network classifier.
J Mater Chem B
January 2025
Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, P. R. China.
Drug delivery for epilepsy treatment faces enormous challenges, where the sole focus on enhancing the ability of drugs to penetrate the blood-brain barrier (BBB) through ligand modification is insufficient because of the absence of seizure-specific drug accumulation. In this study, an amphipathic drug carrier with a glucose transporter (GLUT)-targeting capability was synthesised by conjugating 2-deoxy-2-amino-D-glucose (2-DG) to the model carrier DSPE-PEG. A 2-DG-modified nano drug delivery system (NDDS) possessing robust stability and favourable biocompatibility was then fabricated using the nanoprecipitation method.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China.
Radiation therapy (RT) is a prevalent cancer treatment; however, its therapeutic outcomes are frequently impeded by tumor radioresistance, largely attributed to metabolic reprogramming characterized by increased fatty acid uptake and oxidation. To overcome this limitation, we developed polyphenol-metal coordination polymer (PPWQ), a novel nanoradiotherapy sensitizer specifically designed to regulate fatty acid metabolism and improve RT efficacy. These nanoparticles (NPs) utilize a metal-phenolic network (MPN) to integrate tungsten ions (W), quercetin (QR), and a PD-L1-blocking peptide within a PEG-polyphenol scaffold.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!