Regulatory roles of Alu transcript on gene expression.

Exp Cell Res

Laboratory of Fully Human Antibody Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China. Electronic address:

Published: October 2015

AI Article Synopsis

  • * Recent research has shown an increasing presence of Alu transcripts in various cells and tissues, indicating their importance in the regulation of gene expression.
  • * The review discusses how Alu transcripts influence gene regulation at both transcriptional and post-transcriptional levels, focusing on their molecular mechanisms and structural features.

Article Abstract

Alu element is the most successful transposon and it maintains a high level of content in primate genome. However, despite the fact that the expression level of independent Alu element is rather low under common condition, an increasing number of the observations for the Alu transcripts in cells and tissues have been reported recently. Alu transcripts play key roles in the network of gene expression regulation. The main functions of Alu transcript focus on gene regulation both at transcriptional and post-transcriptional levels. This review summarizes major functions of Alu transcripts on gene expression and highlights molecular mechanisms dependent on conserved sequence or secondary structure in order to unravel a relative ubiquitous way that Alu transcript uses to affect the whole genome.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2015.07.019DOI Listing

Publication Analysis

Top Keywords

alu transcript
12
gene expression
12
alu transcripts
12
alu
8
alu element
8
functions alu
8
regulatory roles
4
roles alu
4
gene
4
transcript gene
4

Similar Publications

SINEs are mobile genetic elements of multicellular eukaryotes that arose during evolution from various tRNAs, as well as from 5S rRNA and 7SL RNA. Like the genes of these RNAs, SINEs are transcribed by RNA polymerase III. The transcripts of some mammalian SINEs have the capability of AAUAAA-dependent polyadenylation, which is unique for transcript generated by RNA polymerase III.

View Article and Find Full Text PDF

Background/objective: Large genomic rearrangements of gene, particularly deletions and duplications, have been linked to hereditary breast-ovarian cancer. Our research specifically focuses on delineating the intronic breakpoints associated with rearrangements of exon 11, which is crucial for understanding the mechanisms underlying these genomic changes in patients with hereditary breast and ovarian syndrome.

Methods: By using next-generation sequencing, we identified one duplication and three deletions of exon 11, confirmed by Multiplex Ligation-Dependent Probe Amplification analysis.

View Article and Find Full Text PDF

Extensive epigenomic dysregulation is a hallmark of homologous recombination deficiency in triple-negative breast cancer.

Int J Cancer

December 2024

Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, One Medical Center Drive, Lebanon, New Hampshire, USA.

Article Synopsis
  • Triple-negative breast cancer (TNBC) is a highly aggressive subtype with varied characteristics, limited treatment choices, and poor clinical outcomes, particularly when associated with homologous recombination deficiency (HRD).
  • The study analyzed TNBC tumors from two groups (n=32 and n=58), revealing significant differences in genome-wide copy number and methylation alterations linked to HRD, including lower methylation in specific genomic regions.
  • Findings indicate that HRD in TNBC is associated with key biological pathways, and using machine learning can aid in classifying tumors based on HRD and methylation patterns, offering potential for improved treatment strategies.
View Article and Find Full Text PDF
Article Synopsis
  • This study investigates extrachromosomal circular DNA (eccDNA) in cancer cells, particularly focusing on its role in hydroquinone-induced TK6-HQ malignantly transformed cells, revealing how eccDNA may impact cancer progression and aging processes.
  • Researchers utilized Circle-seq to identify a substantial number of eccDNAs (669,179 total) in the TK6-HQ cells, with a significant number being less than 1000 base pairs, predominantly found on specific chromosomes and containing important genetic elements.
  • By combining DNA analysis and RNA sequencing, the study found that the suppression of a specific eccDNA (eccDNA_DTX1) using CRISPR/Cas9 led to reduced growth
View Article and Find Full Text PDF

LINE-1 (L1) is a parasitic retrotransposable DNA element, active in primates for the last 80-120 Myr. L1 has generated nearly one-third of the human genome by copying its transcripts, and those of other genetic elements (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: