Galactinol is the galactosyl donor for the biosynthesis of both the raffinose family oligosaccharides (RFOs) and galactosyl cyclitols (Gal-C). Its synthesis by galactinol synthase (GolS, EC 2.4.1.123) is the first committed step of the soluble α-D-galactosides biosynthetic pathway in orthodox seeds. The deposition of galactosides in seeds is suggested to be associated with desiccation tolerance (DT). In this work, for the first time, we cloned and characterized two Vicia hirsuta (L.) S.F. Gray galactinol synthase genes (VhGolS1, VhGolS2), analyzed galactinol synthase activity and measured the accumulation of galactosides of both sucrose and D-pinitol in relation to the acquisition of DT in developing seeds of this wild species. A developmentally induced increase of VhGolS1 expression preceded the rise of GolS activity in crude protein extract from maturing seeds, while the expression of the VhGolS2 gene remained low. GolS activity peaked just after the beginning of the maturation drying phase. The increase of GolS activity was not followed by galactinol accumulation, instead the high enzyme activity was related to high levels of galactose bound in soluble galactosides of the RFO and galactosyl pinitol series. Acquisition of DT coincided with an increase of VhGolS1 expression, high galactinol synthase activity and the accumulation of oligogalactosides in seeds. DT was positively correlated with the high content of soluble α-D-galactosides of both the RFO and galactosyl pinitol series as well as with the amount of galactose bound in these galactosides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jplph.2015.06.013 | DOI Listing |
Plant Physiol Biochem
December 2024
College of Horticulture, Shenyang Agricultural University, Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, 110866, China. Electronic address:
J Hazard Mater
December 2024
CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, India. Electronic address:
Heavy metalloid stress such as arsenic (As) toxicity and nutrient imbalance constitute a significant threat to plant productivity and development. Plants produce sulfur (S)-rich molecules like glutathione (GSH) to detoxify arsenic, but sulfur deficiency worsens its impact. Previous research identified Arabidopsis thaliana ecotypes Koz2-2 (tolerant) and Ri-0 (sensitive) under low-sulfur (LS) and As(III) stress.
View Article and Find Full Text PDFArch Insect Biochem Physiol
December 2024
Biological Control of Insects Research Laboratory, Research Park, USDA Agricultural Research Service, Columbia, Missouri, USA.
RNA interference (RNAi) is a promising technology for controlling insect pests of agriculture. This technology is mediated through the application of double-stranded RNAs (dsRNAs), which are processed within the insect cells into small interfering RNAs (siRNAs). These molecules then target and reduce the expression of the insect-specific genes that can kill or reduce the performance of the pest.
View Article and Find Full Text PDFJ Genet Genomics
December 2024
State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China. Electronic address:
Salt stress significantly inhibits crop growth and development, and mitigating this can enhance salt tolerance in various crops. Previous studies have shown that regulating saccharide biosynthesis is a key aspect of plant salt tolerance; however, the underlying molecular mechanisms remain largely unexplored. In this study, we demonstrate that overexpression of a salt-inducible galactinol synthase gene, ZmGolS1, alleviates salt-induced growth inhibition, likely by promoting raffinose synthesis.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A. C., San Luis Potosí, S.L.P. 78216, Mexico.
Cold stress impedes the growth and development of plants, restricts the geographical distribution of plant species, and impacts crop productivity. In this study, we analyzed the transcriptome to identify differentially expressed genes (DEGs) in 14-day-old plantlets exposed to temperatures of 0 °C, 4 °C, and 10 °C for 24 h, compared to the 22 °C control group. Among the top 50 cold-induced genes at each temperature, we identified 31 genes that were common across all three low temperatures, with nine genes common to 0-4 °C, eight genes to 4-10 °C, and two genes to 0-10 °C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!