A two-dimensional ion chromatography (IC/IC) technique with heart-cutting mode for the separation of ionic organophosphates was developed. These analytes are generated during thermal degradation of three different commercially available Selectilyte™ lithium ion battery electrolytes. The composition of the investigated electrolytes is based on 1M lithium hexafluorophosphate (LiPF6) dissolved in ethylene carbonate/dimethyl carbonate (50:50wt%, LP30), ethylene carbonate/diethyl carbonate (50:50wt%, LP40) and ethylene carbonate/ethyl methyl carbonate (50:50wt%, LP50). The organophosphates were pre-separated from PF6(-) anion on the low capacity A Supp 4 column, which was eluted with a gradient step containing acetonitrile. The fraction containing analytes was retarded on a pre-concentration column and after that transferred to the high capacity columns, where the separation was performed isocratically. Different stationary phases and eluents were applied on the 2nd dimension for the investigation of retention times, whereas the highly promising results were obtained with a high capacitive A Supp 10 column. The organophosphates generated in LP30 and LP40 electrolytes could be separated by application of an aqueous NaOH eluent providing fast analysis time within 35min. For the separation of the organophosphates of LP50 electrolyte due to its complexity a NaOH eluent containing a mixture of methanol/H2O was necessary. In addition, the developed two dimensional IC method was hyphenated to an inductively coupled plasma mass spectrometer (ICP-MS) using aqueous NaOH without organic modifiers. This proof of principle measurement was carried out for future quantitative investigation regarding the concentration of the ionic organophosphates. Furthermore, the chemical stability of several ionic organophosphates in water and acetonitrile at room temperature over a period of 10h was investigated. In both solvents no decomposition of the investigated analytes was observed and therefore water as solvent for dilution of samples was proved as suitable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2015.07.054 | DOI Listing |
Aquat Toxicol
November 2024
Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States. Electronic address:
Pericardial edema - fluid accumulation within the pericardium - is a frequently observed malformation in zebrafish embryo-based chemical toxicity screens. We recently discovered that the severity of triphenyl phosphate (TPHP)-induced pericardial edema was dependent on the ionic strength of exposure media. TPHP is an aryl phosphate ester (APE) widely used as a plasticizer and flame retardant.
View Article and Find Full Text PDFChemosphere
September 2024
Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland; Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany.
Microplastics represent a novel category of environmental pollutants, and understanding their interactions with typical xenobiotics is crucial. In this study, we investigated the impact of ionic liquids (ILs) containing herbicidal anions, namely glyphosate [Glyph] and 2,4-dichlorophenoxyacetate [2,4-D], and the surfactant cation - dodecyltrimethylammonium [CTMA] on acrylonitrile butadiene styrene (ABS) microplastics. The aim of the study was to assess the sorption capacity of microplastics that were present in both untreated and aged form using standard and modified Fenton methods.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
Laboratório de Materiais Magnéticos Nanoestruturados, LaMMaN, Universidade Franciscana - UFN, Santa Maria, RS, Brazil; Programa de Pós-graduação em Nanociências, Universidade Franciscana - UFN, Santa Maria, RS, Brazil. Electronic address:
Anal Bioanal Chem
August 2024
Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China.
Organophosphate flame retardants (OPFRs) are widely used as substitutes for traditional brominated flame retardants, necessitating a reliable and sensitive method for biomonitoring their urinary metabolites to assess human exposure. This study conducted biomonitoring of 10 metabolites of OPFRs in 152 adults and assessed their association with oxidative stress biomarkers 8-hydroxydeoxyguanosine and 8-hydroxyguanosine. Urinary metabolites of OPFRs were released via enzymatic deconjugation.
View Article and Find Full Text PDFJ Chromatogr A
August 2024
Chemistry - Nuclear and Radiochemistry (C-NR), Los Alamos National Laboratory, Mail Stop J-514, Los Alamos NM 87545, USA.
Efficient rare earth element (REE) separations are becoming increasingly important to technologies ranging from renewable energy and high-performance magnets to applied radioisotope separations. These separations are made challenging by the extremely similar chemical and physical characteristics of the individual elements, which almost always occupy the 3+ oxidation state under ambient conditions. Herein, we discuss the development of a novel REE separation aimed at obtaining purified samples of neodymium (Nd) on a multi-milligram scale using high-speed counter-current chromatography (HSCCC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!