Selective loss of dopaminergic neurons in the substantia nigra pars compacta after systemic administration of MPTP facilitates extinction learning.

Life Sci

Department of Pathogenetic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan. Electronic address:

Published: September 2015

Aims: Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNpc). In PD, thinking and retrieval deficits often arise from cognitive impairments. However, the mechanism of cognitive disorders in PD remains unknown. Therefore, we investigated cognitive function in PD model mice produced by intraperitoneal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which specifically destroys the DAergic neurons in the SNpc.

Main Methods: We evaluated the cognitive function of MPTP-treated mice (PD mice) using the contextual fear conditioning test. In the test, each experiment consists of three phases: training, re-exposure, and testing. Mice were trained with a foot shock (a weak unconditioned stimulus: 1mA/2s duration, once, or an intense unconditioned stimulus: 2mA/2s duration, twice), and 24h later, mice were re-exposed to the training context for 3min to determine reconsolidation or 30min to determine extinction. The percentage of time spent freezing was measured during the test session as indexes of memory consolidation, reconsolidation, and extinction.

Key Findings: Reconsolidation of PD mice occurred normally but memory extinction was facilitated in PD mice compared to control mice. Moreover, memory retention in PD mice was attenuated earlier than in controls following repeated conditioned stimuli every day.

Significance: PD mice with selective loss of DAergic neurons in the SNpc showed attenuated memory retention, probably via facilitated extinction learning.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2015.07.017DOI Listing

Publication Analysis

Top Keywords

daergic neurons
12
mice
10
selective loss
8
loss dopaminergic
8
neurons substantia
8
substantia nigra
8
nigra pars
8
pars compacta
8
extinction learning
8
cognitive function
8

Similar Publications

Interactions of VMAT2 with CDCrel-1 and Parkin in Methamphetamine Neurotoxicity.

Int J Mol Sci

December 2024

Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Detroit, MI 48201, USA.

In recent years, methamphetamine (METH) misuse in the US has been rapidly increasing, and there is no FDA-approved pharmacotherapy for METH use disorder (MUD). In addition to being dependent on the drug, people with MUD develop a variety of neurological problems related to the toxicity of this drug. A variety of molecular mechanisms underlying METH neurotoxicity has been identified, including the dysfunction of the neuroprotective protein parkin.

View Article and Find Full Text PDF

The dopamine (DA) transporter (DAT) is a major determinant of DAergic neurotransmission, and is a primary target for addictive and therapeutic psychostimulants. Evidence accumulated over decades in cell lines and in vitro preparations revealed that DAT function is acutely regulated by membrane trafficking. Many of these findings have recently been validated in vivo and in situ, and several behavioral and physiological findings raise the possibility that regulated DAT trafficking may impact DA signaling and DA-dependent behaviors.

View Article and Find Full Text PDF

The role of Sod-2 in different types of neuronal damage and behavioral changes induced by polystyrene nanoplastics in Caenorhabditis elegans.

Ecotoxicol Environ Saf

December 2024

Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; Fujian Provincial Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China. Electronic address:

Article Synopsis
  • Polystyrene nanoplastics (PS-NPs) are harmful substances that accumulate in organisms and cause neurotoxicity, although the specific mechanisms behind this toxicity are not well understood.
  • In a study using nematodes, researchers found that PS-NPs lead to behavioral damage and harm to specific types of neurons, with significant reductions in neurotransmitter levels observed.
  • The study identified that PS-NPs increase reactive oxygen species (ROS) production and decrease the Sod-2 protein, and showed that using the mitochondrial ROS scavenger Mitoquinone can help reduce these toxic effects.
View Article and Find Full Text PDF
Article Synopsis
  • Depression is a common disorder linked to imbalances in neurotransmitters like dopamine (DA), making DA restoration a key treatment focus.
  • Both medication and non-invasive techniques, such as transcutaneous auricular vagus nerve stimulation (taVNS), have shown potential in alleviating depressive symptoms, though taVNS's exact mechanism is still under investigation.
  • Experiments on mice revealed that taVNS reduces depressive-like behaviors by enhancing activity in the ventral tegmental area (VTA) and that inhibiting DA neurons in the VTA negated its effects, highlighting its role in depression treatment.
View Article and Find Full Text PDF
Article Synopsis
  • - Mitochondrial dysfunction and oxidative stress are significant factors in age-related neurodegenerative diseases, and PKCδ isoform in dopaminergic neurons is critical for cell death during these stress events through caspase-3 activation.
  • - The study revealed that upon mitochondrial dysfunction, PKCδ gets activated and moves to the nucleus, where it interacts with Lamin B1, causing nuclear damage and contributing to neuronal cell death.
  • - Experiments showed that blocking PKCδ activation or modifying Lamin B1 can prevent nuclear damage, confirming PKCδ's role as a major player in neurodegenerative processes linked to mitochondrial stress.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!