Granger causality analysis has been suggested as a method of estimating causal modulation without specifying the direction of information flow a priori. Using BOLD-contrast functional MRI (fMRI) data, such analysis has been typically implemented in the time domain. In this study, we used magnetic resonance inverse imaging, a method of fast fMRI enabled by massively parallel detection allowing up to 10 Hz sampling rate, to investigate the causal modulation at different frequencies up to 5 Hz. Using a visuomotor two-choice reaction-time task, both the spectral decomposition of Granger causality and isolated effective coherence revealed that the BOLD signal at frequency up to 3 Hz can still be used to estimate significant dominant directions of information flow consistent with results from the time-domain Granger causality analysis. We showed the specificity of estimated dominant directions of information flow at high frequencies by contrasting causality estimates using data collected during the visuomotor task and resting state. Our data suggest that hemodynamic responses carry physiological information related to inter-regional modulation at frequency higher than what has been commonly considered.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2015.07.036DOI Listing

Publication Analysis

Top Keywords

granger causality
12
causality analysis
8
causal modulation
8
dominant directions
8
directions flow
8
feed-forward connectivity
4
connectivity revealed
4
revealed high
4
high frequency
4
frequency components
4

Similar Publications

Air pollution has become a major challenge to global urban sustainable development, necessitating urgent solutions. Meteorological variables are key determinants of air quality; however, research on their impact across different urban gradients remains limited, and their mechanisms are largely unexplored. This study investigates the dynamic effects of meteorological variables on air quality under varying levels of urbanization using Kaohsiung City, Taiwan, as a case study.

View Article and Find Full Text PDF

Self-pacing physical exercise is thought to rely on high-order cognitive processing (e.g., attentional control to monitor afferent cardiovascular feedback for exercise goals).

View Article and Find Full Text PDF

Background: People with subclinical atrial fibrillation are at increased risk of stroke, albeit to a lesser extent than those with clinical atrial fibrillation, leading to an ongoing debate regarding the benefit of anticoagulation in these individuals. In the ARTESiA trial, the direct-acting oral anticoagulant apixaban reduced stroke or systemic embolism compared with aspirin in people with subclinical atrial fibrillation, but the risk of major bleeding was increased with apixaban. In a prespecified subgroup analysis of ARTESiA, we tested the hypothesis that people with subclinical atrial fibrillation and a history of stroke or transient ischaemic attack, who are known to have an increased risk of recurrent stroke, would show a greater benefit from oral anticoagulation for secondary stroke prevention compared with those without a history of stroke or transient ischaemic attack.

View Article and Find Full Text PDF

This study investigates the relationship between SARS-CoV-2 RT-PCR cycle threshold (Ct) values and key COVID-19 transmission and outcome metrics across five years of the pandemic in Jalisco, Mexico. Utilizing a comprehensive time-series analysis, we evaluated weekly median Ct values as proxies for viral load and their temporal associations with positivity rates, reproduction numbers (Rt), hospitalizations, and mortality. Cross-correlation and lagged regression analyses revealed significant lead-lag relationships, with declining Ct values consistently preceding surges in positivity rates and hospitalizations, particularly during the early phases of the pandemic.

View Article and Find Full Text PDF

In the context of China's ongoing industrial revolution and technological transformation, there is a growing demand for advanced energy management solutions and the increasing role of artificial intelligence in various industries. This paper aims to explore how artificial intelligence (AI) and Energy Storage Technology (EST) interact and co-evolve. Utilizing a full-sample Granger causality test, we identified significant interactions between AI and EST.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!