Volume homeostasis of the cochlear endolymph depends on radial and longitudinal endolymph movements (LEMs). LEMs measured in vivo have been exclusively recognized under physiologically challenging conditions, such as experimentally induced alterations of perilymph osmolarity or endolymph volume. The regulatory mechanisms that adjust LEMs to the physiological requirements of endolymph volume homeostasis remain unknown. Here, we describe the formation of an aquaporin (AQP)-based "water shunt" during the postnatal development of the mouse cochlea and its regulation by different triggers. The final complementary expression pattern of AQP5 (apical membrane) and AQP4 (basolateral membrane) in outer sulcus cells (OSCs) of the cochlear apex is acquired at the onset of hearing function (postnatal day (p)8-p12). In vitro, hyperosmolar perfusion of the perilymphatic fluid spaces or the administration of the muscarinic agonist pilocarpine in cochlear explants (p14) induced the translocation of AQP5 channel proteins into the apical membranes of OSCs. AQP5 membrane translocation was blocked by the muscarinic antagonist atropine. The muscarinic M3 acetylcholine (ACh) receptor (M3R) was identified in murine OSCs via mRNA expression, immunolabeling, and in vitro binding studies using an M3R-specific fluorescent ligand. Finally, the water shunt elements AQP4, AQP5, and M3R were also demonstrated in OSCs of the human cochlea. The regulation of the AQP4/AQP5 water shunt in OSCs of the cochlear apex provides a molecular basis for regulated endolymphatic volume homeostasis. Moreover, its dysregulation or disruption may have pathophysiologic implications for clinical conditions related to endolymphatic hydrops, such as Ménière's disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646919 | PMC |
http://dx.doi.org/10.1007/s00424-015-1720-6 | DOI Listing |
Water Res X
December 2024
School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
The biological nitrogen removal process in wastewater treatment inevitably produces nitrous oxide (NO), a potent greenhouse gas. Coarse bubble mixing is widely employed in wastewater treatment processes to mix anoxic tanks; however, its impacts on NO emissions are rarely reported. This study investigates the effects of coarse bubble mixing on NO emissions in a pilot-scale mainstream nitrite shunt reactor over a 50-day steady-state period.
View Article and Find Full Text PDFSurgery
January 2025
Senior Department of Burns & Plastic Surgery, Institute of Burn in the Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China. Electronic address:
Background: Primary blast lung injury is a common and severe consequence of explosion events, characterized by immediate and delayed effects such as apnea and rapid shallow breathing. The overpressure generated by blasts leads to alveolar and capillary damage, resulting in ventilation-perfusion mismatch and increased intrapulmonary shunting. This reduces the effective gas exchange area, causing hypoxemia and hypercapnia.
View Article and Find Full Text PDFWater Res
December 2024
Department of Civil and Environmental Engineering, Institute of Science Tokyo, 2-12-1, Meguro- Ku, Tokyo, 152-8552, Japan. Electronic address:
Intimately coupled photocatalytic biodegradation (ICPB) has been recently developed as an efficient wastewater treatment technique, particularly for removing persistent organic pollutants. However, photocatalyst/biofilm interaction in terms of photoelectron transfer and its effect on the overall performance of ICPB has not been explored. To investigate these points, interface-engineered composites of bismuth vanadate and reduced graphene oxide with low degree (BiVO/rGO-LC) and high degree of their contact (BiVO/rGO-HC) were fabricated and applied for ICPB.
View Article and Find Full Text PDFCardiovasc Res
December 2024
Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago 8331150, Chile.
Aims: Heart failure (HF) is an emerging epidemic worldwide. Despite advances in treatment, the morbidity and mortality rate of HF remain high, and the global prevalence continues to rise. Common clinical features of HF include cardiac sympathoexcitation, disordered breathing, and kidney dysfunction; kidney dysfunction strongly contributes to sodium retention and fluid overload, leading to poor outcomes of HF patients.
View Article and Find Full Text PDFSmall
December 2024
College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, Shandong, 271018, P. R. China.
Interfacial charge-carrier complexation is a bottleneck problem governing the gating effect of organic photoelectrochemical transistor (OPECT) biosensors. Therefore, it has long been desired to enhance the OPECT gating effect and realize the maximum transconductance at zero bias. In this study, an in situ engineered heterojunction gating and nano-enzymatic catalytic integration of OPECT-colorimetric dual-mode sensing platform is developed for dibutyl phthalate detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!