In this paper, tracking control problems are investigated for a class of uncertain nonlinear systems in lower triangular form. First, a state-feedback controller is designed by using adaptive backstepping technique and the universal approximation ability of fuzzy logic systems. During the design procedure, a developed method with less computation is proposed by constructing one maximum adaptive parameter. Furthermore, adaptive controllers with nonsymmetric dead-zone are also designed for the systems. Then, a sampled-data control scheme is presented to discretize the obtained continuous-time controller by using the forward Euler method. It is shown that both proposed continuous and discrete controllers can ensure that the system output tracks the target signal with a small bounded error and the other closed-loop signals remain bounded. Two simulation examples are presented to verify the effectiveness and applicability of the proposed new design techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCYB.2015.2447153DOI Listing

Publication Analysis

Top Keywords

fuzzy adaptive
4
adaptive control
4
control design
4
design discretization
4
discretization class
4
class nonlinear
4
nonlinear uncertain
4
systems
4
uncertain systems
4
systems paper
4

Similar Publications

A Fuzzy Control Strategy for Multi-Goal Autonomous Robot Navigation.

Sensors (Basel)

January 2025

Department of Product & Systems Design Engineering, University of the Aegean, 84100 Syros, Greece.

This paper addresses the complex problem of multi-goal robot navigation, framed as an NP-hard traveling salesman problem (TSP), in environments with both static and dynamic obstacles. The proposed approach integrates a novel path planning algorithm based on the Bump-Surface concept to optimize the shortest collision-free path among static obstacles, while a Genetic Algorithm (GA) is employed to determine the optimal sequence of goal points. To manage static or dynamic obstacles, two fuzzy controllers are developed: one for real-time path tracking and another for dynamic obstacle avoidance.

View Article and Find Full Text PDF

AI-based processing of future prepared foods: Progress and prospects.

Food Res Int

February 2025

State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China.

The prepared foods sector has grown rapidly in recent years, driven by the fast pace of modern living and increasing consumer demand for convenience. Prepared foods are taking an increasingly important role in the modern catering industry due to their ease of storage, transportation, and operation. However, their processing faces several challenges, including labor shortages, inefficient sorting, inadequate cleaning, unsafe cutting processes, and a lack of industry standards.

View Article and Find Full Text PDF

This study focused on simulating the adsorption-based separation of Methylene Blue (MB) dye utilising Oryza sativa straw biomass (OSSB). Three distinct modelling approaches were employed: artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), and response surface methodology (RSM). To evaluate the adsorbent's potential, assessments were conducted using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM).

View Article and Find Full Text PDF

The implementation of circular economy (CE) policies in the management of urban policies have become essential for improving overall quality of life, development of green energy, and environmental management hence improving the image of cities. This research focuses on uncovering the core concepts of CE within urban environments, emphasizing actions that can improve green energy and environmental management. The CE aims to create a closed-loop system by prioritizing practices like remanufacturing, reusing, and recycling, which collectively help decrease resource usage and limit environmental damage.

View Article and Find Full Text PDF

Saudi Arabia is one of the largest greenhouse gas (GHG) emitters due to its heavy reliance on fossil fuels, has begun taking proactive steps to address climate change under Vision 2030. The initiative aims to reduce the country's GHG emissions. As part of this effort, the government is transitioning to renewable energy (RE) to decrease its dependency on oil and support sustainable environmental development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!