Strict control of tissue-specific gene expression plays a pivotal role during lineage commitment. The transcription factor c-Myb has an essential role in adult haematopoiesis and functions as an oncogene when rearranged in human cancers. Here we have exploited digital genomic footprinting analysis to obtain a global picture of c-Myb occupancy in the genome of six different haematopoietic cell-types. We have biologically validated several c-Myb footprints using c-Myb knockdown data, reporter assays and DamID analysis. We show that our predicted conserved c-Myb footprints are highly dependent on the haematopoietic cell type, but that there is a group of gene targets common to all cell-types analysed. Furthermore, we find that c-Myb footprints co-localise with active histone mark H3K4me3 and are significantly enriched at exons. We analysed co-localisation of c-Myb footprints with 104 chromatin regulatory factors in K562 cells, and identified nine proteins that are enriched together with c-Myb footprints on genes positively regulated by c-Myb and one protein enriched on negatively regulated genes. Our data suggest that c-Myb is a transcription factor with multifaceted target regulation depending on cell type.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4514710PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0133280PLOS

Publication Analysis

Top Keywords

c-myb footprints
20
c-myb
11
transcription factor
8
cell type
8
footprints
5
c-myb binding
4
binding sites
4
sites haematopoietic
4
haematopoietic chromatin
4
chromatin landscapes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!