Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The recent observation of dipole-allowed P excitons up to principal quantum numbers of n=25 in cuprous oxide has given insight into exciton states with unprecedented spectral resolution. While so far the exciton description as a hydrogenlike complex has been fully adequate for cubic crystals, we demonstrate here distinct deviations: The breaking of rotational symmetry leads to mixing of high angular momentum F and H excitons with the P excitons so that they can be observed in absorption. The F excitons show a threefold splitting that depends systematically on n, in agreement with theoretical considerations. From detailed comparison of experiment and theory we determine the cubic anisotropy parameter of the Cu(2)O valence band.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.115.027402 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!