Bounding the Set of Finite Dimensional Quantum Correlations.

Phys Rev Lett

Institute for Nuclear Research, Hungarian Academy of Sciences, P.O. Box 51, H-4001 Debrecen, Hungary.

Published: July 2015

We describe a simple method to derive high performance semidefinite programing relaxations for optimizations over complex and real operator algebras in finite dimensional Hilbert spaces. The method is very flexible, easy to program, and allows the user to assess the behavior of finite dimensional quantum systems in a number of interesting setups. We use this method to bound the strength of quantum nonlocality in Bell scenarios where the dimension of the parties is bounded from above. We derive new results in quantum communication complexity and prove the soundness of the prepare-and-measure dimension witnesses introduced in Gallego et al., Phys. Rev. Lett. 105, 230501 (2010). Finally, we propose a new dimension witness that can distinguish between classical, real, and complex two-level systems.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.115.020501DOI Listing

Publication Analysis

Top Keywords

finite dimensional
12
dimensional quantum
8
bounding set
4
set finite
4
quantum
4
quantum correlations
4
correlations describe
4
describe simple
4
simple method
4
method derive
4

Similar Publications

In urban concentrated area, the disturbance caused by construction affects significantly the sustainability of adjacent existing structures. It is essential to capture the mechanical response of existing structures to adjacent deep excavation. The objective of this paper is to investigate the displacement and internal force behavior of elevated bridge piles (BP) subject to influence of deep excavation.

View Article and Find Full Text PDF

Background: Tibial bone fractures in the malleolar regions are a major concern during the early postoperative period of total ankle replacement (TAR), affecting patient outcomes such as stability and recovery. Design, placement, and anatomic misalignment of implant components can contribute to malleolar fractures. The aim of this study is to understand the influence of implant design features, including keel, peg, stem, and bar type design, and bone-implant interfacial conditions on malleolar fracture following TAR.

View Article and Find Full Text PDF

The directivity of the quasi-static component (QSC) is quantitatively investigated for evaluating the orientation of a micro-crack buried in a thin solid plate using the numerical simulation method. Based on the bilinear stress-strain constitutive model, a three-dimensional (3D) finite element model (FEM) is built for investigating the nonlinear interaction between primary Lamb waves and the micro-crack. When the primary Lamb waves at A0 mode impinge on the micro-crack, under the modulation of the contact acoustic nonlinearity (CAN), the micro-crack itself will induce QSC.

View Article and Find Full Text PDF

Modeling of Electric Field and Dielectrophoretic Force in a Parallel-Plate Cell Separation Device with an Electrode Lid and Analytical Formulation Using Fourier Series.

Sensors (Basel)

December 2024

Department of Applied Physics, National Defense Academy, Hashirimizu 1-10-20, Yokosuka 239-0802, Kanagawa, Japan.

Dielectrophoresis (DEP) cell separation technology is an effective means of separating target cells which are only marginally present in a wide variety of cells. To develop highly efficient cell separation devices, detailed analysis of the nonuniform electric field's intensity distribution within the device is needed, as it affects separation performance. Here we analytically expressed the distributions of the electric field and DEP force in a parallel-plate cell separation DEP device by employing electrostatic analysis through the Fourier series method.

View Article and Find Full Text PDF

Small-section steel-shell concrete immersed tube tunnels are intended for minibuses and have a low fire heat release rate. Standard fire rise curves do not apply to such tunnels. In this study, a coupled method of computational fluid dynamics (CFD) and the finite element method (FEM) was used to simulate the structural temperature distribution in tunnels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!