Photodynamic therapy (PDT) is a promising singlet oxygen ((1)O2) mediated clinical treatment for many tumors. As the source of (1)O2, oxygen plays an important role in the curative effect of PDT. However, the facts of photochemical depletion of oxygen and the intrinsic hypoxic microenvironment of tumors remain the major challenges. In this work, a novel photosensitizer carrier with oxygen self-compensating ability was designed for PDT. It was synthesized via chemical conjugation of hemoglobin (Hb) to polymeric micelles formed by triblock copolymers of poly(ethylene glycol)-block-poly(acrylic acid)-block-polystyrene (PEG-b-PAA-b-PS). The PEG-b-PAA-b-PS and resultant micelles in aqueous solution were comprehensively characterized by means of FTIR, (1)H NMR, GPC, DLS, TEM, and fluorescence spectroscopy. The oxygen-binding capacity and antioxidative activity of the Hb conjugated micelles were evaluated via UV-vis spectroscopy. In addition, compared with the control micelles without Hb, the Hb conjugated photosensitizer carrier was able to generate more (1)O2 and exert greater photocytotoxicity on Hela cells in vitro.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.5b00571 | DOI Listing |
PLoS One
January 2025
College of life Sciences, Sichuan Normal University, Chengdu, Sichuan, China.
Poly-gamma-glutamic acid (γ-PGA) is mainly synthesized by glutamate-dependent strains in the manufacturing industry. Therefore, understanding glutamate-dependent mechanisms is imperative. In this study, we first systematically analyzed the response of Bacillus subtilis SCP017-03 to glutamate addition by comparing transcriptomics and proteomics.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia 26506, United States.
measurement and mapping of oxygen levels within the tissues are crucial in understanding the physiopathological processes of numerous diseases, such as cancer, diabetes, or peripheral vascular diseases. Electron paramagnetic resonance (EPR) associated with biocompatible exogenous spin probes, such as Ox071 triarylmethyl (TAM) radical, is becoming the new gold standard for oxygen mapping in preclinical settings. However, these probes do not show tissue selectivity when injected systemically, and they are not cell permeable, reporting oxygen from the extracellular compartment only.
View Article and Find Full Text PDFCommun Biol
January 2025
School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK.
Reduced cerebral blood flow occurs early in the development of Alzheimer's disease (AD), but the factors producing this reduction are unknown. Here, we ask whether genetic and lifestyle risk factors for AD-the ε4 allele of the Apolipoprotein (APOE) gene, and physical activity-can together produce this reduction in cerebral blood flow which leads eventually to AD. Using in vivo two-photon microscopy and haemodynamic measures, we record neurovascular function from the visual cortex of physically active or sedentary mice expressing APOE3 and APOE4 in place of murine APOE.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Donghua University, No.2999, North Renmin Road, Songjiang District, Shanghai, CHINA.
Herein, we demonstrate a two-in-one strategy for efficient neutral electrosynthesis of H2O2 via two-electron oxygen reduction reaction (2e-ORR), achieved by synergistically fine-modulating both the local microenvironment and electronic structure of indium (In) single atom (SA) sites. Through a series of finite elemental simulations and experimental analysis, we highlight the significant impact of phosphorous (P) doping on an optimized 2D mesoporous carbon carrier, which fosters a favorable microenvironment by improving the mass transfer and O2 enrichment, subsequently leading to an increased local pH levels. Consequently, an outstanding 2e-ORR performance is observed in neutral electrolytes, achieving over 95% selectivity for H2O2 across a broad voltage range of 0.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.
Carrier-free nanomedicines exhibited significant potential in elevating drug efficacy and safety for tumor management, yet their self assembly typically relied on chemical modifications of drugs or the incorporation of surfactants, thereby compromising the drug's inherent pharmacological activity. To address this challenge, we proposed a triethylamine (TEA)-mediated protonation-deprotonation strategy that enabled the adjustable-proportion self assembly of dual drugs without chemical modification, achieving nearly 100% drug loading capacity. Molecular dynamic simulations, supported by experiment evidence, elucidated the underlying self-assembly mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!