The impact of temperature (0-80°C) on anaerobic biogeochemical processes and prokaryotic communities in marine sediments (tidal flat) was investigated in slurries for up to 100 days. Temperature had a non-linear effect on biogeochemistry and prokaryotes with rapid changes over small temperature intervals. Some activities (e.g. methanogenesis) had multiple 'windows' within a large temperature range (∼10 to 80°C). Others, including acetate oxidation, had maximum activities within a temperature zone, which varied with electron acceptor [metal oxide (up to ∼34°C) and sulphate (up to ∼50°C)]. Substrates for sulphate reduction changed from predominantly acetate below, and H2 above, a 43°C critical temperature, along with changes in activation energies and types of sulphate-reducing Bacteria. Above ∼43°C, methylamine metabolism ceased with changes in methanogen types and increased acetate concentrations (>1 mM). Abundances of uncultured Archaea, characteristic of deep marine sediments (e.g. MBGD Euryarchaeota, 'Bathyarchaeota') changed, indicating their possible metabolic activity and temperature range. Bacterial cell numbers were consistently higher than archaeal cells and both decreased above ∼15°C. Substrate addition stimulated activities, widened some activity temperature ranges (methanogenesis) and increased bacterial (×10) more than archaeal cell numbers. Hence, additional organic matter input from climate-related eutrophication may amplify the impact of temperature increases on sedimentary biogeochemistry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4629870PMC
http://dx.doi.org/10.1093/femsec/fiv084DOI Listing

Publication Analysis

Top Keywords

marine sediments
12
temperature
9
impact temperature
8
temperature range
8
activity temperature
8
cell numbers
8
complex coupled
4
coupled metabolic
4
metabolic prokaryotic
4
prokaryotic community
4

Similar Publications

Historical record of trace elements since MIS 2 in a sediment core of Laizhou Bay, China.

Environ Monit Assess

January 2025

Sinopec Offshore Oilfield Services Company, Shanghai, 201208, China.

The concentration of trace elements in sediments is a critical element in the quality of nearshore environments. Geochemical background values are the normal concentrations of trace elements in the natural environment, and the use of different background values has resulted in different evaluations. Trace element (Cu, Pb, Zn, Cr, Cd, As, and Hg) concentration profiles along a sediment core were investigated to obtain background values and to assess the depositional processes and contamination levels in Laizhou Bay.

View Article and Find Full Text PDF

Possible glendonite mineral pseudomorphs in the aftermath of the end-Permian extinction.

Sci Rep

January 2025

Grant Institute, School of Geosciences, University of Edinburgh, James Hutton Road, Edinburgh, EH9 3FE, UK.

Glendonites (from the precursor of ikaite, CaCO.6HO) preferentially precipitate within sediments in cold waters (- 2 to 7°C) via either organotrophic or methanogenic sulphate reduction. Here, we report the first occurrence of possible glendonites associated with the end Permian mass extinction in the earliest Triassic (ca.

View Article and Find Full Text PDF

Depth heterogeneity of lignin-degrading microbiome and organic carbon processing in mangrove sediments.

NPJ Biofilms Microbiomes

January 2025

School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, 510006, Guangzhou, China.

Mangrove ecosystems are globally recognized for their blue carbon (C) sequestration capacity. Lignocellulosic detritus constitutes the primary C input to mangrove sediments, but the microbial processes involved in its bioprocessing remain unclear. Using lignocellulosic analysis and metagenomic sequencing across five 100-cm sediment cores, we found a high proportion of lignin (95.

View Article and Find Full Text PDF

The NASA Mars 2020 Perseverance Rover Mission has collected samples of rock, regolith, and atmosphere within the Noachian-aged Jezero Crater, once the site of a delta-lake system with a high potential for habitability and biosignature preservation. Between sols 109 and 1,088 of the mission, 27 sample tubes have been sealed, including witness tubes. Each sealed sample tube has been collected along with detailed documentation provided by the Perseverance instrument payload, preserving geological and environmental context.

View Article and Find Full Text PDF

Karst caves, formed from the dissolution of soluble rocks, are characterized by the absence of photosynthetic activity and low levels of organic matter. Organisms evolve under these particular conditions, which causes high levels of endemic biodiversity in both macroorganism and microbes. Recent research has highlighted the presence of testate amoebae (Arcellinida) group in cave environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!