Quantitative Ultrasound Comparison of MAT and 4T1 Mammary Tumors in Mice and Rats Across Multiple Imaging Systems.

J Ultrasound Med

Departments of Electrical and Computer Engineering (L.A.W., G.G., A.D.P., R.J.M., M.L.O., W.D.O.) and Statistics (Y.P., D.G.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois USA; and Department of Medical Physics, University of Wisconsin, Madison, Wisconsin USA (I.M.R.-M., K.N., J.A.Z., T.J.H.).

Published: August 2015

Objectives: Quantitative ultrasound estimates such as the frequency-dependent backscatter coefficient (BSC) have the potential to enhance noninvasive tissue characterization and to identify tumors better than traditional B-mode imaging. Thus, investigating system independence of BSC estimates from multiple imaging platforms is important for assessing their capabilities to detect tissue differences.

Methods: Mouse and rat mammary tumor models, 4T1 and MAT, respectively, were used in a comparative experiment using 3 imaging systems (Siemens, Ultrasonix, and VisualSonics) with 5 different transducers covering a range of ultrasonic frequencies.

Results: Functional analysis of variance of the MAT and 4T1 BSC-versus-frequency curves revealed statistically significant differences between the two tumor types. Variations also were found among results from different transducers, attributable to frequency range effects. At 3 to 8 MHz, tumor BSC functions using different systems showed no differences between tumor type, but at 10 to 20 MHz, there were differences between 4T1 and MAT tumors. Fitting an average spline model to the combined BSC estimates (3-22 MHz) demonstrated that the BSC differences between tumors increased with increasing frequency, with the greatest separation above 15 MHz. Confining the analysis to larger tumors resulted in better discrimination over a wider bandwidth.

Conclusions: Confining the comparison to higher ultrasonic frequencies or larger tumor sizes allowed for separation of BSC-versus-frequency curves from 4T1 and MAT tumors. These constraints ensure that a greater fraction of the backscattered signals originated from within the tumor, thus demonstrating that statistically significant tumor differences were detected.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4527166PMC
http://dx.doi.org/10.7863/ultra.34.8.1373DOI Listing

Publication Analysis

Top Keywords

4t1 mat
12
quantitative ultrasound
8
mat 4t1
8
multiple imaging
8
imaging systems
8
tumors better
8
bsc estimates
8
bsc-versus-frequency curves
8
differences tumor
8
mat tumors
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!