A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks. | LitMetric

AI Article Synopsis

  • - Northern high-latitude rivers transport significant amounts of carbon from land to coastal seas, with Arctic warming causing permafrost thaw that releases ancient carbon stored in the soil.
  • - Research in the Kolyma River Basin reveals that microbial communities can utilize very old carbon, some over 50,000 years old, from permafrost thaw waters, alongside younger carbon found in streams.
  • - As permafrost continues to thaw, it will release more bioavailable carbon into Arctic freshwater systems, potentially worsening climate change due to positive feedback loops.

Article Abstract

Northern high-latitude rivers are major conduits of carbon from land to coastal seas and the Arctic Ocean. Arctic warming is promoting terrestrial permafrost thaw and shifting hydrologic flowpaths, leading to fluvial mobilization of ancient carbon stores. Here we describe (14)C and (13)C characteristics of dissolved organic carbon from fluvial networks across the Kolyma River Basin (Siberia), and isotopic changes during bioincubation experiments. Microbial communities utilized ancient carbon (11,300 to >50,000 (14)C years) in permafrost thaw waters and millennial-aged carbon (up to 10,000 (14)C years) across headwater streams. Microbial demand was supported by progressively younger ((14)C-enriched) carbon downstream through the network, with predominantly modern carbon pools subsidizing microorganisms in large rivers and main-stem waters. Permafrost acts as a significant and preferentially degradable source of bioavailable carbon in Arctic freshwaters, which is likely to increase as permafrost thaw intensifies causing positive climate feedbacks in response to on-going climate change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4525200PMC
http://dx.doi.org/10.1038/ncomms8856DOI Listing

Publication Analysis

Top Keywords

permafrost thaw
12
carbon
9
fluvial networks
8
ancient carbon
8
14c years
8
permafrost
5
utilization ancient
4
ancient permafrost
4
permafrost carbon
4
carbon headwaters
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: