Relationship between cell stiffness and stress fiber amount, assessed by simultaneous atomic force microscopy and live-cell fluorescence imaging.

Biomech Model Mechanobiol

Auditory Mechanics Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10 Rm. 5D49, 10 Center Drive, MSC-1417, Bethesda, MD, 20892, USA.

Published: June 2016

Actomyosin stress fibers, one of the main components of the cell's cytoskeleton, provide mechanical stability to adherent cells by applying and transmitting tensile forces onto the extracellular matrix (ECM) at the sites of cell-ECM adhesion. While it is widely accepted that changes in spatial and temporal distribution of stress fibers affect the cell's mechanical properties, there is no quantitative knowledge on how stress fiber amount and organization directly modulate cell stiffness. We address this key open question by combining atomic force microscopy with simultaneous fluorescence imaging of living cells, and combine for the first time reliable quantitative parameters obtained from both techniques. We show that the amount of myosin and (to a lesser extent) actin assembled in stress fibers directly modulates cell stiffness in adherent mouse fibroblasts (NIH3T3). In addition, the spatial distribution of stress fibers has a second-order modulatory effect. In particular, the presence of either fibers located in the cell periphery, aligned fibers or thicker fibers gives rise to reinforced cell stiffness. Our results provide basic and significant information that will help design optimal protocols to regulate the mechanical properties of adherent cells via pharmacological interventions that alter stress fiber assembly or via micropatterning techniques that restrict stress fiber spatial organization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4869747PMC
http://dx.doi.org/10.1007/s10237-015-0706-9DOI Listing

Publication Analysis

Top Keywords

cell stiffness
16
stress fiber
16
stress fibers
16
stress
8
fiber amount
8
atomic force
8
force microscopy
8
fluorescence imaging
8
adherent cells
8
distribution stress
8

Similar Publications

Bone tissue regeneration can be affected by various architectonical features of 3D porous scaffold, for example, pore size and shape, strut size, curvature, or porosity. However, the design of additively manufactured structures studied so far was based on uniform geometrical figures and unit cell structures, which often do not resemble the natural architecture of cancellous bone. Therefore, the aim of this study was to investigate the effect of architectonical features of additively manufactured (aka 3D printed) titanium scaffolds designed based on microtomographic scans of fragments of human femurs of individuals of different ages on in vitro response of human bone-derived mesenchymal stem cells (hMSC).

View Article and Find Full Text PDF

Kidney explant cultures are traditionally carried out at air-liquid interfaces, which disrupts 3D tissue structure and limits interpretation of developmental data. To overcome this limitation, we developed a 3D culture technique using hydrogel embedding to capture morphogenesis in real time. We show that 3D culture better approximates -like niche spacing and dynamic tubule tip rearrangement, as well as -like presentation of branching defects under perturbations to glial cell-derived neurotrophic factor (GDNF)- RE arranged during T ransfection (RET) tyrosine kinase signaling.

View Article and Find Full Text PDF

Runx2-NLRP3 Axis Orchestrates Matrix Stiffness-evoked Vascular Smooth Muscle Cell Inflammation.

Am J Physiol Cell Physiol

January 2025

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China.

Arterial stiffening is a hallmark of chronic kidney disease (CKD) related cardiovascular events and is primarily attributed to the elevated matrix stiffness. Stiffened arteries are accompanied by low-grade inflammation, but the causal effects of matrix stiffness on inflammation remain unknown. For analysis of the relationship between arterial stiffness and vascular inflammation, pulse wave velocity (PWV) and aortic inflammatory markers were analyzed in an adenine-induced mouse model of CKD in chronological order.

View Article and Find Full Text PDF

The synovium is a loose connective tissue that separates the intra-articular (IA) joint compartments of all diarthrodial joints from the systemic circulation. It can be divided into two layers: the intima, a thin and cell-dense layer atop a more heterogeneous subintima, composed of collagen and various cell types. The subintima contains penetrating capillaries and lymphatic vessels that rapidly clear injected drugs from the joint space which may vary not only with drug size and charge but also with the microstructure and composition of the intima and subintima of the synovium.

View Article and Find Full Text PDF

Biomaterial scaffold engineering presents great potential in promoting axonal regrowth after spinal cord injury (SCI), yet persistent challenges remain, including the surrounding host foreign body reaction and improper host-implant integration. Recent advances in mechanobiology spark interest in optimizing the mechanical properties of biomaterial scaffolds to alleviate the foreign body reaction and facilitate seamless integration. The impact of scaffold stiffness on injured spinal cords has not been thoroughly investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!