Variation in swim bladder drumming sounds from three doradid catfish species with similar sonic morphologies.

J Exp Biol

Laboratoire de Morphologie Fonctionnelle et Evolutive, AFFISH-RC, Institut de chimie, Bât. B6c, Université de Liège, Liège B-4000, Belgium.

Published: September 2015

A variety of teleost fishes produce sounds for communication by vibrating the swim bladder with fast contracting muscles. Doradid catfishes have an elastic spring apparatus (ESA) for sound production. Contractions of the ESA protractor muscle pull the anterior transverse process of the 4th vertebra or Müllerian ramus (MR) to expand the swim bladder and elasticity of the MR returns the swim bladder to the resting state. In this study, we examined the sound characteristics and associated fine structure of the protractor drumming muscles of three doradid species: Acanthodoras cataphractus, Platydoras hancockii and Agamyxis pectinifrons. Despite large variations in size, sounds from all three species had similar mean dominant rates ranging from 91 to 131 Hz and showed frequencies related to muscle contraction speed rather than fish size. Sounds differed among species in terms of waveform shape and their rate of amplitude modulation. In addition, multiple distinguishable sound types were observed from each species: three sound types from A. cataphractus and P. hancockii, and two sound types from A. pectinifrons. Although sounds differed among species, no differences in muscle fiber fine structure were observed at the species level. Drumming muscles from each species bear features associated with fast contractions, including sarcoplasmic cores, thin radial myofibrils, abundant mitochondria and an elaborated sarcoplasmic reticulum. These results indicate that sound differences between doradids are not due to swimbladder size, muscle anatomy, muscle length or Müllerian ramus shape, but instead result from differences in neural activation of sonic muscles.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.123414DOI Listing

Publication Analysis

Top Keywords

swim bladder
16
sound types
12
sounds three
8
three doradid
8
species
8
müllerian ramus
8
fine structure
8
drumming muscles
8
size sounds
8
sounds differed
8

Similar Publications

Despite the close and clinically confirmed association between depression and overactive bladder, it remains unclear whether this affective disorder is a factor causing overactive bladder or whether overactive bladder is a specific symptom of psychosomatic disorders. This study examined the effects of repeated corticosterone administration on the occurrence of symptoms associated with depression and overactive bladder. Additionally, we examined whether administering TC-G 1008, an antidepressant that selectively activates the GPR39 receptor, could alleviate corticosterone-induced depression-like behavior and detrusor overactivity-related changes in cystometric measurements.

View Article and Find Full Text PDF

Amelioration of arsenic-induced hepatic injury via sulfated glycosaminoglycan from swim bladder: Modulation of Nrf2 pathway and amino acid metabolism.

Int J Biol Macromol

December 2024

Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China; College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China. Electronic address:

Arsenic, a known environmental pollutant with a carcinogenic risk, is associated with chronic liver toxicity. Prebiotic regulation represents an emerging dietary strategy to alleviate arsenic-induced hepatotoxicity; however, research in this area remains limited. This study employed sulfated swim bladder glycosaminoglycan (SBSG), a potential prebiotic, to assess its efficacy in mitigating arsenic-induced liver injury.

View Article and Find Full Text PDF

Impacts of hexafluoropropylene oxide tetrameric acid (HFPO-TeA) on neurodevelopment and GABAergic signaling in zebrafish larvae.

Ecotoxicol Environ Saf

November 2024

Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Jiangwangmiao Street 8, Nanjing 210042, China. Electronic address:

Hexafluoropropylene oxide oligomer acids (HFPOs), an emerging environmental pollutant, are increasingly utilized in the manufacture of fluorinated synthetic materials as a substitute for traditional perfluorooctanoic acid (PFOA), resulting in a corresponding rise in detection rates in aquatic environments, which may present inherent safety hazards to ecosystems and public health. However, few data are available on the issue of their toxicity and mechanism. This study aimed to investigate the potential toxic effects of hexafluoroepoxypropane tetrameric acid (HFPO-TeA), a typical HFPO, on the early developmental stages of zebrafish larvae.

View Article and Find Full Text PDF
Article Synopsis
  • - Premature ovarian failure (POF) is a common issue in women, and oxidative damage is a key factor in its occurrence, highlighting the need for effective treatments.
  • - The study explores the extraction of collagen peptides from sturgeon swim bladder using various methods, finding that these peptides have strong antioxidant properties and can positively impact ovarian health in POF mice.
  • - The collagen peptides help improve ovarian function by enhancing follicle development and manipulating hormone levels, linked to specific signaling pathways, suggesting potential for future health product development.
View Article and Find Full Text PDF

Baseline Raman Spectral Fingerprints of Zebrafish Embryos and Larvae.

Biosensors (Basel)

November 2024

CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal.

As a highly sensitive vibrational technique, Raman spectroscopy (RS) can provide valuable chemical and molecular data useful to characterise animal cell types, tissues and organs. As a label-free, rapid detection method, RS has been considered a valuable asset in forensics, biology and medicine. The technique has been applied to zebrafish for various purposes, including physiological, biochemical or bioaccumulation analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!