[Ethical problems raised by new reproductive biotechnologies and stem cells].

C R Biol

Académie des sciences, 23, quai de Conti, 75006 Paris, France. Electronic address:

Published: June 2016

Research about the hormonal mechanisms controlling reproduction in mammals has soared during the first half of the 20th century. It has produced a series of discoveries with important outcomes, not only scientific, but also impacting the ways of life. Besides the advent of the contraceptive pill, it has permitted to isolate and cultivate in vitro the female gamete, to fertilize it, thus obtaining a zygote that continues to develop until the blastocyst stage outside the maternal organism. The embryo, transferred into a foster-mother, develops normally until term: the first "test-tube baby" was born in this way in 1978. But the only fact of being able to cultivate the human egg in vitro was to open other possibilities and allow further biological advances: embryonic stem cells (ES cells) obtained from blastocysts and, more recently, from induced Pluripotent Stem cells (iPS), which can potentially be derived from all types of differentiated cell types obtained from adult individuals. From then on, the advent of a new medicine could be anticipated, regenerative because able to replace deficient or absent cells within the organism. As each of these steps was reached, scientists have encountered vigorous opposition from the people: the new potentials disturbed the conceptions that man had of his relationship to nature, in particular in two sensitive domains: sexuality and reproduction. The progress of science has however been accepted by most as soon as it was understood that humanity could anticipate advantages from these advances.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.crvi.2015.06.013DOI Listing

Publication Analysis

Top Keywords

stem cells
8
[ethical problems
4
problems raised
4
raised reproductive
4
reproductive biotechnologies
4
biotechnologies stem
4
stem cells]
4
cells] hormonal
4
hormonal mechanisms
4
mechanisms controlling
4

Similar Publications

Identification of circadian rhythm-related biomarkers and development of diagnostic models for Crohn's disease using machine learning algorithms.

Comput Methods Biomech Biomed Engin

January 2025

Department of Gastroenterolgy, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China.

The global rise in Crohn's Disease (CD) incidence has intensified diagnostic challenges. This study identified circadian rhythm-related biomarkers for CD using datasets from the GEO database. Differentially expressed genes underwent Weighted Gene Co-Expression Network Analysis, with 49 hub genes intersected from GeneCards data.

View Article and Find Full Text PDF

Hypertension, commonly known as high blood pressure, is a significant health issue that increases the risk of cardiovascular diseases, stroke, and renal failure. This condition broadly encompasses both primary and secondary forms. Despite extensive research, the underlying mechanisms of systemic arterial hypertension-particularly primary hypertension, which has no identifiable cause and is affected by genetic and lifestyle agents-remain complex and not fully understood.

View Article and Find Full Text PDF

Phenotypic Characterisation of Bone Marrow-Derived Haematopoietic Stem/Progenitor Cells from HIV-Infected Individuals.

Stem Cell Rev Rep

January 2025

Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, Pretoria, 0084, South Africa.

View Article and Find Full Text PDF

Saponins enhance the stability and cost-efficiency of human embryonic stem cell culture.

Cell Regen

January 2025

Department of Neurology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.

The cultivation and differentiation of human embryonic stem cells (hESCs) into organoids are crucial for advancing of new drug development and personalized cell therapies. Despite establishing of chemically defined hESC culture media over the past decade, these media's reliance on growth factors, which are costly and prone to degradation, poses a challenge for sustained and stable cell culture. Here, we introduce an hESC culture system(E6Bs) that facilitates the long-term, genetically stable expansion of hESCs, enabling cells to consistently sustain high levels of pluripotency markers, including NANOG, SOX2, TRA-1-60, and SSEA4, across extended periods.

View Article and Find Full Text PDF

Bone marrow mesenchymal stromal cells (BM-MSCs) are integral components of the bone marrow microenvironment, playing a crucial role in supporting hematopoiesis. Recent studies have investigated the potential involvement of BM-MSCs in the pathophysiology of acute lymphoblastic leukemia (ALL). However, the exact contribution of BM-MSCs to leukemia progression remains unclear because of conflicting findings and limited characterization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!