Naja atra cathelicidin (NA-CATH) is a 34-amino acid highly cationic peptide identified in Chinese cobras to possess potent toxicity against gram-negative and gram-positive bacteria and low toxicity against host cells. Here, we report the NMR solution structure of the full-length NA-CATH peptide and its interaction with liposomes. The structure shows a well-defined α-helix between residues Phe3 to Lys23, on which one surface is lined by the side-chains of one arginine and 11 lysine residues, while the other side is populated by hydrophobic residues. The last eleven amino acids, which are predominately aromatic and hydrophobic in nature, have no defined structure. NMR data reveal that these residues do not interact with the hydrophobic residues of the helix, indicating that the C-terminal residues have random conformations. Fluorescence requenching experiments, in which liposomes serve as a mimic of the bacterial membranes, result in fluorophore leakage that is consistent with a membrane thinning or transient pore formation mechanism. NMR titration studies of the peptide-liposome interaction reveal that the peptide is in fast exchange with the liposome, consistent with the fluorescent studies. These data indicate that full length NA-CATH possesses a helical segment and unstructured C-terminal tail that disrupts the bilayer to induce leakage and lysing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamem.2015.07.006 | DOI Listing |
Alzheimers Dement
December 2024
Yonsei University, Incheon, Incheon, Korea, Republic of (South).
Background: As amyloid-β (Aβ) aggregates are considered as the biomarkers and key factors in the pathology of Alzheimer's disease, there has been extensive investigation into Aβ-targeting compounds for the development of diagnostics and drug discovery related to the disorder. However, the polymorphic and heterogenous nature of Aβ aggregates impedes the structural understanding of their structure. Consequently it is a major challenge to develop new diagnostic and therapeutic development of AD and to study the mechanism of Aβ-targeting compounds.
View Article and Find Full Text PDFFood Res Int
January 2025
College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China; Xiamen Ocean Vocational College, Xiamen, Fujian 361100, China. Electronic address:
Food allergy incidents resulting from the consumption of Mactra quadrangularis is frequently reported. Investigating the impact of the Maillard reaction on the allergenicity of M. quadrangularis allergens is beneficial for the development of hypoallergenic mollusks aquatic products.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China. Electronic address:
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by elevated blood glucose levels, generally due to defects of insulin action or secretion. Inhibition of α-glucosidase, an enzyme responsible for carbohydrate degradation, is a promising strategy for managing postprandial hyperglycemia in diabetic patients. In this study, two new C-linked diarylheptanoid dimers, kaemgalanganols A (1) and B (2), were isolated from K.
View Article and Find Full Text PDFArch Biochem Biophys
January 2025
Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP) - Botucatu-SP, Brazil. Electronic address:
Leishmaniasis is a neglected tropical disease caused by protozoans of the Leishmania genus, against which no effective treatment or control is available. Like other eukaryotes, parasite telomeres are maintained by telomerase, a ribonucleoprotein complex vital for genome stability. Its protein component, TERT (telomerase reverse transcriptase), presents four structural and functional domains, with the TEN (Telomerase N-terminal) and TRBD (Telomerase RNA-binding) located at its N-terminal.
View Article and Find Full Text PDFComput Biol Chem
December 2024
Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China. Electronic address:
Due to the unclear selectivity of the protein system, designing selective small molecule inhibitors has been a significant challenge. This issue is particularly prominent in the phosphodiesterases (PDEs) system. Phosphodiesterase 1B (PDE1B) and phosphodiesterase 10 A (PDE10A) are two closely related subtypes of PDE proteins that play diverse roles in the immune system and tumorigenesis, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!