Objectives: This study classified and quantified the variation in fractional flow reserve (FFR) due to fluctuations in systemic and coronary hemodynamics during intravenous adenosine infusion.
Background: Although FFR has become a key invasive tool to guide treatment, questions remain regarding its repeatability and stability during intravenous adenosine infusion because of systemic effects that can alter driving pressure and heart rate.
Methods: We reanalyzed data from the VERIFY (VERification of Instantaneous Wave-Free Ratio and Fractional Flow Reserve for the Assessment of Coronary Artery Stenosis Severity in EverydaY Practice) study, which enrolled consecutive patients who were infused with intravenous adenosine at 140 μg/kg/min and measured FFR twice. Raw phasic pressure tracings from the aorta (Pa) and distal coronary artery (Pd) were transformed into moving averages of Pd/Pa. Visual analysis grouped Pd/Pa curves into patterns of similar response. Quantitative analysis of the Pd/Pa curves identified the "smart minimum" FFR using a novel algorithm, which was compared with human core laboratory analysis.
Results: A total of 190 complete pairs came from 206 patients after exclusions. Visual analysis revealed 3 Pd/Pa patterns: "classic" (sigmoid) in 57%, "humped" (sigmoid with superimposed bumps of varying height) in 39%, and "unusual" (no pattern) in 4%. The Pd/Pa pattern repeated itself in 67% of patient pairs. Despite variability of Pd/Pa during the hyperemic period, the "smart minimum" FFR demonstrated excellent repeatability (bias -0.001, SD 0.018, paired p = 0.93, r(2) = 98.2%, coefficient of variation = 2.5%). Our algorithm produced FFR values not significantly different from human core laboratory analysis (paired p = 0.43 vs. VERIFY; p = 0.34 vs. RESOLVE).
Conclusions: Intravenous adenosine produced 3 general patterns of Pd/Pa response, with associated variability in aortic and coronary pressure and heart rate during the hyperemic period. Nevertheless, FFR - when chosen appropriately - proved to be a highly reproducible value. Therefore, operators can confidently select the "smart minimum" FFR for patient care. Our results suggest that this selection process can be automated, yet comparable to human core laboratory analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcin.2015.01.039 | DOI Listing |
Intensive Care Med Exp
January 2025
Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Louvain, Belgium.
Background: Sepsis-induced cardiomyopathy (SICM) often occurs in the acute phase of sepsis and is associated with increased mortality due to cardiac dysfunction. The pathogenesis remains poorly understood, and no specific treatments are available. Although SICM is considered reversible, emerging evidence suggests potential long-term sequelae.
View Article and Find Full Text PDFACS Nano
January 2025
Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
Atherosclerosis (AS) is a prevalent inflammatory vascular disease characterized by plaque formation, primarily composed of foam cells laden with lipids. Despite lipid-lowering therapies, effective plaque clearance remains challenging due to the overexpression of the CD47 molecule on apoptotic foam cells, inhibiting macrophage-mediated cellular efferocytosis and plaque resolution. Moreover, AS lesions are often associated with severe inflammation and oxidative stress, exacerbating disease progression.
View Article and Find Full Text PDFViruses
December 2024
Gilead Sciences, Inc., Foster City, CA 94404, USA.
Ebola virus (EBOV) causes severe disease in humans, with mortality as high as 90%. The small-molecule antiviral drug remdesivir (RDV) has demonstrated a survival benefit in EBOV-exposed rhesus macaques. Here, we characterize the efficacy of multiple intravenous RDV dosing regimens on survival of rhesus macaques 42 days after intramuscular EBOV exposure.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
Percutaneous coronary intervention (PCI) is a proven therapy for acute myocardial infarction (AMI) cardiogenic shock (CS). Dual anti-platelet therapy (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!