New platinum(ii) and ruthenium(ii) mononuclear complexes with naphthalene-based Schiff base ligands L1 (H2-selnaph) and L2 (H2-selnaph-COOH) were synthesized: Pt-selnaph (), Pt-selnaph-COOH (), Ru-selnaph(4-picoline)2 (), and Ru-selnaph(isoquinoline)2 (). The complexes were characterized by NMR spectroscopy, matrix-assisted laser desorption/ionization time-of-flight spectrometry, and elemental analysis, and their electrochemical and photophysical properties were investigated. The luminescent complexes and were used as photosensitizers for visible-light driven hydrogen production reactions in the presence of sacrificial electron donor triethylamine and cocatalyst precursor K2PtCl4 aqueous solution. When complex was attached to the surface of TiO2 by a carboxyl group, enhanced hydrogen photogeneration was achieved compared with complex alone, with turnover numbers of about 84 after 12 h irradiation. Calculations based on electrochemical and spectroscopic data also confirmed the feasibility of electron injection through the carboxyl group of complex into the conduction band of TiO2 for hydrogen production reactions. Complexes and were found to be efficient stable water oxidation (NH4)2Ce(NO3)6-driven catalysts with a first-order reaction behavior. A turnover frequency of 5.34 min(-1) was achieved for complex , while complex exhibited an enhanced turnover frequency of 11.9 min(-1) in pH 1.0 aqueous solution. Turnover numbers up to 1400 and 2060 were obtained after 6.5 h of reaction for and , respectively. Unique mechanistic information for water splitting is also presented through electrochemical, spectroscopic and ESI-MS high-valent ruthenium-oxo intermediate investigations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5dt01055a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!