Background: Duodenal-jejunal bypass (DJB) has been shown to be an effective surgical treatment for type 2 diabetes mellitus (T2DM). However, the underlying mechanisms are poorly understood. Recently, accumulating evidences suggest that endoplasmic reticulum (ER) stress plays an important role in the development of insulin resistance in T2DM. The present study was designed to investigate the effect of DJB on glucose homeostasis, the ER stress state in the liver tissue, and the involving signaling independently of weight loss.

Methods: Thirty adult male T2DM Sprague-Dawley (SD) rats induced by high-fat diet and low dose of streptozotocin (STZ) were randomly divided into DJB and sham groups. Ten age-matched male SD rats were assigned as the control group. The parameters of body weight and calorie intake were measured at indicated time points. The glucose tolerance and insulin resistance were detected to evaluate the glucose homeostasis. Serum insulin was determined by enzyme-linked immunosorbent assay (ELISA). The markers of ER stress, the activity of c-Jun N-terminal kinase (JNK) and serine phosphorylation of insulin receptor substrate 1 (IRS-1) in the liver tissue, were determined by Western blotting.

Results: DJB induced significant improvements in glucose homeostasis and insulin sensitivity, but without weight loss. DJB improved the ER stress state indicated by decreased protein kinase RNA (PKR)-like ER protein kinase (PERK) and inositol-requiring enzyme 1 (IRE-1) phosphorylation in the liver tissue. The JNK activity and serine phosphorylation of IRS-1 in the liver tissue were significantly reduced after DJB.

Conclusions: DJB ameliorates glucose homeostasis. Meanwhile, our study helps to reveal that the reduced hepatic ER stress and the decreased JNK activity may contribute to the improved glucose homeostasis after DJB.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11695-015-1816-2DOI Listing

Publication Analysis

Top Keywords

glucose homeostasis
24
liver tissue
20
duodenal-jejunal bypass
8
ameliorates glucose
8
endoplasmic reticulum
8
reticulum stress
8
insulin resistance
8
stress state
8
serine phosphorylation
8
irs-1 liver
8

Similar Publications

Novel Therapies for Right Ventricular Failure.

Curr Cardiol Rep

January 2025

Pediatric Advanced Heart Failure and Heart Transplant Program, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS, USA.

Purpose Of Review: Traditionally viewed as a passive player in circulation, the right ventricle (RV) has become a pivotal force in hemodynamics. RV failure (RVF) is a recognized complication of primary cardiac and pulmonary vascular disorders and is associated with a poor prognosis. Unlike treatments for left ventricular failure (LVF), strategies such as adrenoceptor signaling inhibition and renin-angiotensin system modulation have shown limited success in RVF.

View Article and Find Full Text PDF

Role of transforming growth factor-β1 in regulating adipocyte progenitors.

Sci Rep

January 2025

Research Center for Pre-Disease Science, Faculty of Education and Research Promotion, University of Toyama, Toyama, 930-0194, Japan.

Adipose tissue (AT) metabolism involves coordinating various cells and cellular processes to regulate energy storage, release, and overall metabolic homeostasis. Therein, macrophage and its cytokine are important in controlling tissue homeostasis. Among cytokines, the role of transforming growth factor-β1 (Tgf-β1), a cytokine abundantly expressed in CD206 M2-like macrophage and correlated with the expansion of AT and fibrosis, in AT metabolism, remains unknown.

View Article and Find Full Text PDF

Glutamine availability may be reduced in chronic diseases, such as type 2 diabetes mellitus (T2DM)-induced by obesity. Herein, the antioxidant, anti-inflammatory and lipid metabolism effects of chronic oral glutamine supplementation in its free and dipeptide form were assessed in ob/ob mice. Adult male C57BL/6J ob/ob mice were supplemented with L-alanyl-L-glutamine (DIP) or free L-glutamine (GLN) in the drinking water for 40 days, whilst C57BL/6J Wild-type lean (WT) and control ob/ob mice (CTRL) received fresh water only.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is a highly selective, semipermeable barrier critical for maintaining brain homeostasis. The BBB regulates the transport of essential nutrients, hormones, and signaling molecules between the bloodstream and the central nervous system (CNS), while simultaneously protecting the brain from potentially harmful substances and pathogens. This selective permeability ensures that the brain is nourished and shielded from toxins.

View Article and Find Full Text PDF

Ectopic olfactory receptors are expressed in nonolfactory tissues and perform diverse roles including regulation of glucose homeostasis. We explored the effect of citronellal treatment on olfactory receptor 4M1 subtype (OR4M1) signaling in insulin resistance and Type II diabetes in rats. We aimed to validate the anti-diabetic effect of citronellal through Asprosin/OR4M1 modulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!