Fluoxetine was originally developed as an antidepressant, but it has also been used to treat obesity. Although the anti-appetite effect of fluoxetine is well-documented, its potential effects on human adipose-derived stem cells (ASCs) or mature adipocytes have not been investigated. Therefore, we investigated the mechanisms underlying the inhibitory effects of fluoxetine on the proliferation of ASCs. We also investigated its inhibitory effect on adipogenic differentiation. Fluoxetine significantly decreased ASC proliferation, and signal transduction PCR array analysis showed that it increased expression of autophagy-related genes. In addition, fluoxetine up-regulated SQSTM1 and LC3B protein expression as detected by western blotting and immunofluorescence. The autophagy inhibitor, 3-methyladenine (3-MA), significantly attenuated fluoxetine-mediated effects on ASC proliferation and SQSTM1/LC3B expression. In addition, 3-MA decreased the mRNA expression of two autophagy-related genes, beclin-1 and Atg7, in ASCs. Fluoxetine also significantly inhibited lipid accumulation and down-regulated the levels of PPAR-γ and C/EBP-α in ASCs. Collectively, these results indicate that fluoxetine decreases ASC proliferation and adipogenic differentiation. This is the first in vitro evidence that fluoxetine can reduce fat accumulation by inhibiting ASC proliferation and differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4519971PMC
http://dx.doi.org/10.3390/ijms160716655DOI Listing

Publication Analysis

Top Keywords

asc proliferation
16
adipogenic differentiation
12
fluoxetine
9
fluoxetine decreases
8
proliferation adipogenic
8
human adipose-derived
8
adipose-derived stem
8
stem cells
8
expression autophagy-related
8
autophagy-related genes
8

Similar Publications

SLC1A5 is a key regulator of glutamine metabolism and a prognostic marker for aggressive luminal breast cancer.

Sci Rep

January 2025

Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, England.

Cancer cells exhibit altered metabolism, often relying on glutamine (Gln) for growth. Breast cancer (BC) is a heterogeneous disease with varying clinical outcomes. We investigated the role of the amino acid transporter SLC1A5 (ASCT2) and its association with BC subtypes and patient outcomes.

View Article and Find Full Text PDF

∆-Tetrahydrocannabinol Increases Growth Factor Release by Cultured Adipose Stem Cells and Adipose Tissue in vivo.

Tissue Eng Regen Med

January 2025

Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.

Background: Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.

View Article and Find Full Text PDF

Interleukin-6 (IL-6) expression in mesenchymal stem cells (MSCs) has been shown to play a pivotal role in modulating cartilage regeneration and immune responses, particularly in the context of diseases that involve both degenerative processes and inflammation, such as osteoarthritis (OA). However, the precise mechanism through which IL-6 and other immune-regulatory factors influence the therapeutic efficacy of autologous adipose-derived stem cells (ASCs) transplantation in OA treatment remains to be fully elucidated. This study aims to investigate the relationship between IL-6 expression in autologous ASCs isolated from OA patients and their impact on immune modulation, particularly focusing on the regulation of Receptor Activator of Nuclear factor Kappa-Β Ligand (RANKL), a key mediator of immune-driven cartilage degradation in OA.

View Article and Find Full Text PDF

Immunological memory in a teleost fish: common carp IgM B cells differentiate into memory and plasma cells.

Front Immunol

January 2025

Laboratory of Fish Protistology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.

Article Synopsis
  • All vertebrates, from ancient fishes to mammals, possess adaptive immunity and immunological memory, although the specific responding cells in fish have not been clearly defined.
  • Researchers infected common carp with a cnidarian parasite and observed that B cells proliferated and showed signs of differentiation, indicating they can form memory cells.
  • The study revealed that these memory B cells can persist for at least six months, alongside identifying a distinct population of plasma cells, suggesting that teleost fish possess the necessary immune components for effective long-term disease protection akin to other vertebrates.
View Article and Find Full Text PDF

Cryopreservation enhances the availability of "off-the-shelf" cell therapies. However, the choice between tissue culture polystyrene (TCP) and hollow fiber system (HFB) system for adipose-derived stem cell (ASC) production remains a critical decision, with implications for scalability, reproducibility, and the clinical efficacy. Therefore, the characteristics of ASCs expanded in TCP and HFB and cryopreserved were compared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!