The control of rhythmic action sequences may involve two distinct timing strategies, i.e., event-based and emergent timing, which are usually revealed through finger-tapping and circle-drawing tasks, respectively. There is a lively debate concerning the possibility of coexistence of the two modes of timing for the execution of a single task. If one considers emergent timing as simply an absence of explicit representation of a time interval, then by definition, the two modes of timing cannot coexist. However, if one considers that emergent timing engages control of another motor parameter, e.g., a control of movement through space rather than time, then the possibility of coexistence needs to be reassessed. In the present study, we designed a hybrid of finger-tapping and circle-drawing tasks for which the demands for space and time control were present at the same time in order to reassess the coexistence hypothesis. Seventy-eight participants performed a spatial-tapping task in which finger taps were to be produced in synchrony with a regular metronome to 6 visual targets presented around a virtual circle. The metronome set ten distinct tempi (1100-300 ms). Using autocorrelation analyses on timing variables, we show that motor timing was event-based at slow tempi and emergent at faster tempi. Through an analysis of the trajectory, we confirm that an increase in the spatial control of movement took place congruently with a switch from event-based to emergent timing modes. At these fast tempi, timing and spatial errors were correlated but only at the specific target location for which a dynamical anchor point was revealed. Hence, we conclude that the coding of emergent timing has a spatial nature from which emerge timing regularities. This spatio-temporal strategy insures the performance of sequential motor actions when cognitive effort is too high for the use of pure event-based timing strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.humov.2015.06.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!