We have built a polarization-sensitive swept source Optical Coherence Tomography (OCT) instrument capable of wide-field in vivo imaging in the oral cavity. This instrument uses a hand-held side-looking fiber-optic rotary pullback catheter that can cover two dimensional tissue imaging fields approximately 2.5 mm wide by up to 90 mm length in a single image acquisition. The catheter spins at 100 Hz with pullback speeds up to 15 mm/s allowing imaging of areas up to 225 mm(2) field-of-view in seconds. A catheter sheath and two optional catheter sheath holders have been designed to allow imaging at all locations within the oral cavity. Image quality of 2-dimensional image slices through the data can be greatly enhanced by averaging over the orthogonal dimension to reduce speckle. Initial in vivo imaging results reveal a wide-field view of features such as epithelial thickness and continuity of the basement membrane that may be useful in clinic for chair-side management of oral lesions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4505717 | PMC |
http://dx.doi.org/10.1364/BOE.6.002664 | DOI Listing |
Transl Vis Sci Technol
December 2024
Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada.
Purpose: To demonstrate that high-seed, ultra-high-resolution spectral-domain optical coherence tomography (SD-OCT) technology can image in vivo fine morphological features in the healthy and pathological human limbus.
Methods: A compact, fiberoptic SD-OCT system was developed for imaging the human limbus. It combines ∼1.
Transl Vis Sci Technol
December 2024
Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
Purpose: The corneal nerves within the sub-basal nerve plexus (SBNP) display a distinctive whorl-like pattern, a highly dynamic structure that could be a marker of diseases. Previous studies have reported a decrease in whorl nerve density in patients with diabetes, indicating an avenue for noninvasive monitoring of diabetic neuropathy. However, conflicting results have since been reported, highlighting the need for improved quantitative analysis of the corneal whorl.
View Article and Find Full Text PDFMol Brain
November 2024
Endowed Department of Cognitive Function and Pathology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
A trajectory-tracked, near-infrared autofluorescence imaging guided, biochemical signature-projected needle-type Raman spectroscopy (TNBN-RS) system integrated on a medical cart was developed for rapid wide-field breast tissue stratification. A wide-field (10 × 10 cm) near-infrared autofluorescence (NIRAF) imaging subsystem was developed for gross stratification of breast tissue types based on higher NIRAF intensity associated with breast cancer, followed by projection of NIRAF-identified breast tumor margins onto the tissue of interest with a compact projector. Raman spectra were further acquired from the NIRAF projected regions for confirmed margin assessment using a needle-type Raman probe equipped with color camera-based probe trajectory tracking.
View Article and Find Full Text PDFSmall Methods
November 2024
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, P. R. China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!