During the twentieth century, Amazonia was widely regarded as relatively pristine nature, little impacted by human history. This view remains popular despite mounting evidence of substantial human influence over millennial scales across the region. Here, we review the evidence of an anthropogenic Amazonia in response to claims of sparse populations across broad portions of the region. Amazonia was a major centre of crop domestication, with at least 83 native species containing populations domesticated to some degree. Plant domestication occurs in domesticated landscapes, including highly modified Amazonian dark earths (ADEs) associated with large settled populations and that may cover greater than 0.1% of the region. Populations and food production expanded rapidly within land management systems in the mid-Holocene, and complex societies expanded in resource-rich areas creating domesticated landscapes with profound impacts on local and regional ecology. ADE food production projections support estimates of at least eight million people in 1492. By this time, highly diverse regional systems had developed across Amazonia where subsistence resources were created with plant and landscape domestication, including earthworks. This review argues that the Amazonian anthrome was no less socio-culturally diverse or populous than other tropical forested areas of the world prior to European conquest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528512PMC
http://dx.doi.org/10.1098/rspb.2015.0813DOI Listing

Publication Analysis

Top Keywords

european conquest
8
domesticated landscapes
8
food production
8
domestication
4
domestication amazonia
4
amazonia european
4
conquest twentieth
4
twentieth century
4
amazonia
4
century amazonia
4

Similar Publications

Between the 8th and 11th centuries CE, the Iberian Peninsula underwent profound upheaval due to the Umayyad invasion against the Visigoths, resulting in population shifts and lasting demographic impacts. Our understanding of this period is hindered by limited written sources and few archaeogenetic studies. We analyzed 33 individuals from Las Gobas, a necropolis in northern Spain, spanning the 7th to 11th centuries.

View Article and Find Full Text PDF

During the Hungarian Conquest in the 10th century CE, the early medieval Magyars, a group of mounted warriors from Eastern Europe, settled in the Carpathian Basin. They likely introduced the Hungarian language to this new settlement area, during an event documented by both written sources and archaeological evidence. Previous archaeogenetic research identified the newcomers as migrants from the Eurasian steppe.

View Article and Find Full Text PDF

Evolutionary assembly of the plant terrestrialization toolkit from protein domains.

Proc Biol Sci

July 2024

Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, Goettingen 37077, Germany.

Land plants (embryophytes) came about in a momentous evolutionary singularity: plant terrestrialization. This event marks not only the conquest of land by plants but also the massive radiation of embryophytes into a diverse array of novel forms and functions. The unique suite of traits present in the earliest land plants is thought to have been ushered in by a burst in genomic novelty.

View Article and Find Full Text PDF

Genomes of multicellular algal sisters to land plants illuminate signaling network evolution.

Nat Genet

May 2024

Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA.

Article Synopsis
  • Zygnematophyceae, a group of filamentous algae, are closely related to land plants, and this study sequenced four of their genomes, creating detailed chromosome-scale assemblies for three strains of Zygnema circumcarinatum.
  • The research identified key traits in their common ancestor with land plants that may have enabled plants to adapt to life on land, including expanded genes for signaling, environmental responses, and multicellular growth.
  • Additionally, the study revealed shared enzymes for cell wall synthesis between Zygnematophyceae and land plants, suggesting a genetic framework that integrates environmental responses with developmental growth over 600 million years of evolution.
View Article and Find Full Text PDF

Water scarcity can be considered a major stressor on land, with desiccation being its most extreme form. Land plants have found two different solutions to this challenge: avoidance and tolerance. The closest algal relatives to land plants, the Zygnematophyceae, use the latter, and how this is realized is of great interest for our understanding of the conquest of land.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!