Hollow particles of Pt-Ni-Au alloys have been prepared through a two-step reaction with the synthesis of NiPt octahedral and cuboctahedral templates followed by a galvanic replacement reaction by Au(iii). Metal etching presents an efficient method to yield hollow particles and investigate the Au diffusion in the metallic Pt-Ni framework through macroscopic (X-ray diffraction and SQUID magnetic measurement) and microscopic (HRTEM and STEM) measurements. The hollow particles retain the shape of the original nanocrystals. The nucleation of Au is found to be induced preferentially on the tip of the polyhedral nanocrystals while the etching of Ni starts from the facets leaving hollow octahedral particles consisting of 2 nm thick edges. In the presence of oleylamine, the Au tip grows and yields a heterogeneous dimer hollow-NiPt/Au. Without oleylamine, the Au nucleation is followed by Au diffusion in the Ni/Pt framework to yield a hollow single crystal Pt-Ni-Au alloy. The Pt-Ni-Au alloyed particles display a superparamagnetic behavior at room temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5nr03522hDOI Listing

Publication Analysis

Top Keywords

hollow particles
12
hollow octahedral
8
octahedral cuboctahedral
8
pt-ni-au alloys
8
yield hollow
8
hollow
6
particles
5
cuboctahedral nanocrystals
4
nanocrystals ternary
4
pt-ni-au
4

Similar Publications

Hydrogen Bonding-Driven Adaptive Coacervates as Protocells.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.

Coacervation based on liquid-liquid phase separation (LLPS) has been widely used for the preparation of artificial protocells and to mimic the dynamic organization of membrane-free organelles. Most complex synthetic coacervates are formed through electrostatic interactions but cannot withstand high ionic strength conditions (>0.1 M).

View Article and Find Full Text PDF

Insulin degrading enzyme (IDE) is a dimeric 110 kDa M16A zinc metalloprotease that degrades amyloidogenic peptides diverse in shape and sequence, including insulin, amylin, and amyloid-β, to prevent toxic amyloid fibril formation. IDE has a hollow catalytic chamber formed by four homologous subdomains organized into two ~55 kDa N- and C- domains (IDE-N and IDE-C, respectively), in which peptides bind, unfold, and are repositioned for proteolysis. IDE is known to transition between a closed state, poised for catalysis, and an open state, able to release cleavage products and bind new substrate.

View Article and Find Full Text PDF

The rising demand for efficient energy storage in flexible electronics is driving the search for materials that are well-suited for the fabrication of these devices. Layered Double Hydroxides (LDHs) stand out as a remarkable material with a layered structure that embodies exceptional electrochemical properties. In this study, both double-shelled and single-shelled NiFe-Layered Double Hydroxide (LDH) particles are prepared using spindle-shaped MIL-101(Fe) as the template.

View Article and Find Full Text PDF

Hollow Salt Prepared Through Spray Drying with Alginate Enhances Salinity Perception to Reduce Sodium Intake.

Foods

December 2024

SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Liaoning Key Laboratory of Food Nutrition and Health, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.

Currently, high-salt diets have become one of the world's biggest dietary crisis and long-term high-salt diets are seriously detrimental to human health. In response to this situation, the present study proposed a saltiness enhancement strategy using alginate, which is a dietary fibre from brown algae and has many health benefits, such as regulating intestinal microbiota, anti-hypertension and anti-obesity. The comparison of alginates with different viscosities showed that alginate of 1000-1500 cps at a concentration of 1.

View Article and Find Full Text PDF

The collapse of surface goaf beneath highways can result in instability and damage to roadbeds. However, filling the goaf areas with foam concrete can significantly enhance the stability of the roadbeds while considerably reducing the costs of filling materials. This study analyzes the effects on destructive characteristics, mechanical properties, stress-strain curve features, and relevant metrics, while also observing the microstructure of basalt fiber-calcined gangue-silty clay foam concrete (BF-CCG-SCFC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!