The wet chemical synthesis of nanostructures has many crucial advantages over high-temperature methods, including simplicity, low-cost, and deposition on almost arbitrary substrates. Nevertheless, the density-controlled solution growth of nanowires still remains a challenge, especially at the low densities (e.g. 1 to 10 nanowires/100 μm(2)) required, as an example, for intracellular analyses. Here, we demonstrate the solution-growth of ZnO nanowires using a thin chromium film as a nucleation inhibitor and Au size-selected nanoclusters (SSNCs) as catalytic particles for which the density and, in contrast with previous reports, size can be accurately controlled. Our results also provide evidence that the enhanced ZnO hetero-nucleation is dominated by Au SSNCs catalysis rather than by layer adaptation. The proposed approach only uses low temperatures (≤70 °C) and is therefore suitable for any substrate, including printed circuit boards (PCBs) and the plastic substrates which are routinely used for cell cultures. As a proof-of-concept we report the density-controlled synthesis of ZnO nanowires on flexible PCBs, thus opening the way to assembling compact intracellular-analysis systems, including nanowires, electronics, and microfluidics, on a single substrate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4511950PMC
http://dx.doi.org/10.1038/srep12336DOI Listing

Publication Analysis

Top Keywords

zno nanowires
12
solution growth
8
nanowires
5
chromium inhibition
4
inhibition size-selected
4
size-selected nanocluster
4
nanocluster catalysis
4
catalysis solution
4
growth low-density
4
zno
4

Similar Publications

Selective adsorption of unmethylated DNA on ZnO nanowires for separation of methylated DNA.

Lab Chip

January 2025

Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan.

DNA methylation is a crucial epigenetic modification used as a biomarker for early cancer progression. However, existing methods for DNA methylation analysis are complex, time-consuming, and prone to DNA degradation. This work demonstrates selective capture of unmethylated DNAs using ZnO nanowires without chemical or biological modifications, thereby concentrating methylated DNA, particularly those with high methylation levels that can predict cancer risk.

View Article and Find Full Text PDF

Cellulose is attracting considerable attention in the field of flexible electronics due to its unique properties and environmental sustainability, particularly as a substrate for flexible devices. Flexible photodetectors are an integral part of cellulose-based devices and have become essential in optical communication, heart rate monitoring, and imaging systems. The performance and adaptability of these photodetectors depend significantly on the quality of the flexible substrates.

View Article and Find Full Text PDF

In this work, the sensing ability and the underlying reaction pathways of HS adsorption on two nanomaterial systems, pristine zinc oxide (ZnO) nanowires (NWs) and gold functionalized zinc oxide nanowires (Au@ZnO NWs), were explored in a side-by-side comparison of optical and electrical gas sensing. The properties of optical sensing were analyzed by photoluminescence intensity-over-time measurements (-) of as-grown ZnO NW samples, and the electrical gas-sensing properties were analyzed by current-over-time measurements (-) of ZnO NW chemically sensitive field-effect transistor (ChemFET) structures with a gas-sensitive open gate. The ZnO NWs were grown by high-temperature chemical vapor deposition (CVD) and thereafter surface-functionalized with a thin Au nanoparticle layer by magnetron sputtering.

View Article and Find Full Text PDF

Advancement in piezoelectric nanogenerators for acoustic energy harvesting.

Microsyst Nanoeng

December 2024

Department of Computer and Information Engineering, Khalifa University, Abu Dhabi, 12778, UAE.

The demand for sustainable energy sources to power small electronics like IoT devices has led to exploring innovative solutions like acoustic energy harvesting using piezoelectric nanogenerators (PENGs). Acoustic energy harvesting leverages ambient noise, converting it into electrical energy through the piezoelectric effect, where certain materials generate an electric charge in response to mechanical stress or vibrations. This review paper provides a comprehensive analysis of the advancements in PENG technology, emphasizing their role in acoustic energy harvesting.

View Article and Find Full Text PDF

Neuromorphic computing, inspired by the brain, holds significant promise for advancing artificial intelligence. Artificial optoelectronic synapses, which can convert optical signals into electrical signals, play a crucial role in neuromorphic computing. In this study, we successfully fabricated a flexible artificial optoelectronic synapse device based on the ZnO/PDMS structure by utilizing the magnetron sputtering technique to deposit the ZnO film on a flexible substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!