The Rice Floral Repressor Early flowering1 Affects Spikelet Fertility By Modulating Gibberellin Signaling.

Rice (N Y)

Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea,

Published: December 2015

Background: Gibberellic acid (GA; or gibberellin) affects the development of floral organs, especially anthers and pollen, and perturbation of development of male floral organs can cause sterility. Many studies of GA signaling have concentrated on anther development, but the effect of GA on grain production remains to be examined.

Results: Using a cross of 'Milyang23 (M23)', which has a functional allele of Early flowering1 (EL1), and 'H143', which has a nonfunctional el1 allele, we generated heterogeneous inbred family-near isogenic lines (HNILs) that are homozygous for EL1 [HNIL(M23)] or el1 [HNIL(H143)]. Here, we found that HNIL(H143) exhibited anther deformities and low pollen viability. The expression of GAMYB, a major activator of GA signaling, and its downstream genes CYP703A3 and KAR, mainly involved in pollen formation, increased abnormally during spikelet development; this activation of GA signaling may cause the sterility. To confirm the negative effect of the el1 mutation on spikelet fertility, we examined a line carrying a T-DNA insertion el1 mutant [hereafter ZH11(el1)] and its parental cultivar 'Zhonghua11 (ZH11)'. ZH11(el1) showed nearly identical defects in anther development and pollen viability as HNIL(H143), leading to decreased seed setting rate. However, the elite japonica cultivar Koshihikari, which has a nonfunctional el1 allele for early flowering in long days, produces fertile spikelets and normal grain yields, like other elite japonica cultivars. This indicates that as-yet-unknown regulator(s) that can overcome the male sterile phenotype of the el1 mutation must have been introduced into Koshihikari.

Conclusions: The el1 mutation contributes to early flowering in japonica rice under long days but fails to limit GA signaling, thus negatively affecting spikelet fertility, which results in a loss of grain yield. Thus, EL1 is essential for photoperiod sensitivity in flowering as well as spikelet fertility in grain production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4584262PMC
http://dx.doi.org/10.1186/s12284-015-0058-1DOI Listing

Publication Analysis

Top Keywords

spikelet fertility
16
el1 mutation
12
el1
10
early flowering1
8
floral organs
8
anther development
8
grain production
8
allele early
8
nonfunctional el1
8
el1 allele
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!