Purpose: To evaluate the histopathology in donor eyes from patients with autosomal dominant retinitis pigmentosa (ADRP) caused by p.P23H, p.P347T and p.P347L rhodopsin ( RHO ) gene mutations.
Methods: Eyes from a 72-year-old male (donor 1), an 83-year-old female (donor 2), an 80-year-old female (donor 3), and three age-similar normal eyes were examined macroscopically, by scanning laser ophthalmoscopy and optical coherence tomography imaging. Perifoveal and peripheral pieces were processed for microscopy and immunocytochemistry with markers for photoreceptor cells.
Results: DNA analysis revealed RHO mutations c.68C>A (p.P23H) in donor 1, c.1040C>T (p.P347L) in donor 2 and c.1039C>A (p.P347T) in donor 3. Histology of the ADRP eyes showed retinas with little evidence of stratified nuclear layers in the periphery and a prominent inner nuclear layer present in the perifoveal region in the p.P23H and p.P347T eyes, while it was severely atrophic in the p.P347L eye. The p.P23H and p.P347T mutations cause a profound loss of rods in both the periphery and perifovea, while the p.P347L mutation displays near complete absence of rods in both regions. All three rhodopsin mutations caused a profound loss of cones in the periphery. The p.P23H and p.P347T mutations led to the presence of highly disorganized cones in the perifovea. However, the p.P347L mutation led to near complete absence of cones also in the perifovea.
Conclusions: Our results support clinical findings indicating that mutations affecting residue P347 develop more severe phenotypes than those affecting P23. Furthermore, our results indicate a more severe phenotype in the p.P347L retina as compared to the p.P347T retina.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9629391 | PMC |
http://dx.doi.org/10.1007/s00417-015-3099-7 | DOI Listing |
PLoS One
February 2012
Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America.
Background: P23H rhodopsin, a mutant rhodopsin, is known to aggregate and cause retinal degeneration. However, its effects on retinal pigment epithelial (RPE) cells are unknown. The purpose of this study was to determine the effect of P23H rhodopsin in RPE cells and further assess whether LEDGF(1-326), a protein devoid of heat shock elements of LEDGF, a cell survival factor, reduces P23H rhodopsin aggregates and any associated cellular damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!