Nutritional systems biology of type 2 diabetes.

Genes Nutr

Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.

Published: September 2015

Type 2 diabetes (T2D) has become an increasingly challenging health burden due to its high morbidity, mortality, and heightened prevalence worldwide. Although dietary and nutritional imbalances have long been recognized as key risk factors for T2D, the underlying mechanisms remain unclear. The advent of nutritional systems biology, a field that aims to elucidate the interactions between dietary nutrients and endogenous molecular entities in disease-related tissues, offers unique opportunities to unravel the complex mechanisms underlying the health-modifying capacities of nutritional molecules. The recent revolutionary advances in omics technologies have particularly empowered this incipient field. In this review, we discuss the applications of multi-omics approaches toward a systems-level understanding of how dietary patterns and particular nutrients modulate the risk of T2D. We focus on nutritional studies utilizing transcriptomics, epigenomomics, proteomics, metabolomics, and microbiomics, and integration of diverse omics technologies. We also summarize the potential molecular mechanisms through which nutritional imbalances contribute to T2D pathogenesis based on these studies. Finally, we discuss the remaining challenges of nutritional systems biology and how the field can be optimized to further our understanding of T2D and guide disease management via nutritional interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4512958PMC
http://dx.doi.org/10.1007/s12263-015-0481-3DOI Listing

Publication Analysis

Top Keywords

nutritional systems
12
systems biology
12
nutritional
8
type diabetes
8
nutritional imbalances
8
biology field
8
omics technologies
8
t2d
5
biology type
4
diabetes type
4

Similar Publications

Background: Developing interventions along with the population of interest using systems thinking is a promising method to address the underlying system dynamics of overweight. The purpose of this study is twofold: to gain insight into the perspectives of adolescents regarding: (1) the system dynamics of energy balance-related behaviours (EBRBs) (physical activity, screen use, sleep behaviour and dietary behaviour); and (2) underlying mechanisms and overarching drivers of unhealthy EBRBs.

Methods: We conducted Participatory Action Research (PAR) to map the system dynamics of EBRBs together with adolescents aged 10-14 years old living in a lower socioeconomic, ethnically diverse neighbourhood in Amsterdam East, the Netherlands.

View Article and Find Full Text PDF

Background: Arginine infusion stimulates copeptin secretion, a surrogate marker of arginine vasopressin (AVP), thereby serving as a diagnostic test in the differential diagnosis of suspected AVP deficiency (AVP-D). Yet, the precise mechanism underlying the stimulatory effect of arginine on the vasopressinergic system remains elusive. Arginine plays a significant role in the urea cycle and increases the production of urea.

View Article and Find Full Text PDF

Global food production predominantly depends on a limited number of cereal crops; however, numerous other crops have the potential to support the nutrition and economy of many local communities in developing countries. The different crop species characterized as having relatively low perceived economic importance or agricultural significance are known as underutilized crops. Millet is one of the underutilized crops with significant potential to address nutrient and hunger-related challenges in many developing countries like Nepal due to its versatility and climate resilience.

View Article and Find Full Text PDF

Social group size alters social behavior and dopaminergic and serotonergic systems.

Soc Neurosci

January 2025

Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan, Republic of Korea.

Social behavior is affected by social structure type, but how neural function changes with social type remains unclear. We investigated whether social group size affects social behaviors based on dopamine (DA) and serotonin (5-HT) systems. Four-week-old male mice were housed under different social group sizes: one, two, four, and eight mice per cage (1mpc, 2mpc, 4mpc, 8mpc, respectively).

View Article and Find Full Text PDF

Ultra-processed food consumption and risk of dementia and Alzheimer's disease: The Framingham Heart Study.

J Prev Alzheimers Dis

February 2025

Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA; The Framingham Study, Framingham, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA.

Background: Ultra-processed food consumption is emerging as a risk factor for various cardiometabolic diseases, however its association with dementia and Alzheimer's disease has rarely been explored.

Objectives: We sought to examine whether ultra-processed food consumption is associated with risk of all-cause dementia and Alzheimer's disease among middle-age and older adults.

Design: A prospective cohort study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!