The bioinspired design and synthesis of building blocks and their assemblies by the supramolecular approach has ever fascinated scientists to utilize such artificial systems for numerous purposes. Flexibility is a basic feature of natural systems. However, in artificial systems this is difficult to control, especially if there is no preorganization of the component(s) of a system. We have designed and synthesized a series of C3 -symmetric N-bridged flexible receptors and successfully utilized them to selectively entrap the notorious and toxic nitrate anion in aqueous medium. This was the first report of highest binding affinity for the nitrate anion in aqueous medium. An impressive self-sorting phenomenon of reversibly formed hydrogen-bonded capsules, which self-assembled from flexible tripodal receptors having branches of similar size and bearing the same amide functionality, has been disclosed. Encapsulated nitrate anion has been further utilized for the photochemical [2+2] cycloaddition reaction for the synthesis of strained four-membered ring structures through dynamic self-assembly. In this Personal Account, we summarize these results showing the utility of naturally inspired flexibility in artificial systems.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tcr.201500021DOI Listing

Publication Analysis

Top Keywords

artificial systems
12
nitrate anion
12
anion aqueous
8
aqueous medium
8
structurally flexible
4
flexible c₃-symmetric
4
c₃-symmetric receptors
4
receptors molecular
4
molecular recognition
4
recognition self-assembly
4

Similar Publications

Incidence of fall-from-height injuries and predictive factors for severity.

J Osteopath Med

January 2025

McAllen Department of Trauma, South Texas Health System, McAllen, TX, USA.

Context: The injuries caused by falls-from-height (FFH) are a significant public health concern. FFH is one of the most common causes of polytrauma. The injuries persist to be significant adverse events and a challenge regarding injury severity assessment to identify patients at high risk upon admission.

View Article and Find Full Text PDF

A novel aggregation-induced emission (AIE)-based artificial light-harvesting system (LHS) is successfully assembled via the host-guest interaction of bis-naphthylacrylonitrile derivative (BND), water-soluble pillar[5]arene (WP5), and sulforhodamine 101 (SR101). After host-guest assembly, the formed WP5⊃BND complexes spontaneously self-aggregated into WP5⊃BND nanoparticles (donors) and SR101 (acceptors) is introduced into WP5⊃BND to fabricate WP5⊃BND-SR101 LHS. Through the investigation of energy transfer between donors and acceptors, the artificial light-harvesting processes are certified in WP5⊃BND-SR101 LHS and the absolute fluorescence quantum yields (Φ) are significantly improved from 8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!