The Role of Intestinal Microbiota in Graft versus Host Disease.

Mini Rev Med Chem

Aflac Cancer and Blood Disorders Center, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia.

Published: September 2016

Graft versus host disease (GVHD) remains a major life threatening complication and one of the primary barriers to successful allogeneic hematopoietic stem cell transplantation, limiting its application in nonmalignant conditions. Immunosuppression is used for prevention and treatment of GVHD, dampening the graft versus leukemia effect. Intestinal bacteria play a major role in inflammation and augmenting the GVHD cytokine response. Early studies in murine models showed that manipulating the presence of intestinal flora or counteracting its byproducts could limit GVHD. Thus multiple clinical trials targeting gut decontamination were conducted, with the aims of modulating inflammation and protecting against GVHD, with mixed results. More recent work has improved our understanding of the role of intestinal microbiota in the maintenance of innate immunity, mucosal integrity and limiting inflammation. This review offers a summary of this data, with a discussion of potential therapeutic interventions manipulating the intestinal microbiota.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1389557515666150722110547DOI Listing

Publication Analysis

Top Keywords

intestinal microbiota
12
graft versus
12
role intestinal
8
versus host
8
host disease
8
gvhd
5
microbiota graft
4
disease graft
4
disease gvhd
4
gvhd remains
4

Similar Publications

Whipworms (Trichuris spp) are ubiquitous parasites of humans and domestic and wild mammals that cause chronic disease, considerably impacting human and animal health. Egg hatching is a critical phase in the whipworm life cycle that marks the initiation of infection, with newly hatched larvae rapidly migrating to and invading host intestinal epithelial cells. Hatching is triggered by the host microbiota; however, the physical and chemical interactions between bacteria and whipworm eggs, as well as the bacterial and larval responses that result in the disintegration of the polar plug and larval eclosion, are not completely understood.

View Article and Find Full Text PDF

Backgrounds: Abuse of feed supplement can cause oxidative stress and inflammatory responses in Gallus gallus. Synbiotics are composed of prebiotics and probiotics and it possess huge application potentials in the treatment of animal diseases.

Methods: This study examined the effect of d-tagatose on the probiotic properties of L.

View Article and Find Full Text PDF

Chlorella vulgaris has antioxidant, antimicrobial, and anti-inflammatory properties, as well as the probiotic that is important for keeping the intestinal microbiota balanced. The objective was to test the impact of supplementation with microalgae and/or probiotics on broiler chickens' performance, immunity, and intestinal microbiota. The experimental design was in randomized blocks in a 4x2 factorial scheme, with four levels of inclusion of C.

View Article and Find Full Text PDF

To clarify the effects of kefir in critical periods of development in adult diseases, we study the effects of kefir intake during early life on gut microbiota and prevention of colorectal carcinogenesis in adulthood. Lactating Wistar rats were divided into three groups: control (C), kefir lactation (KL), and kefir puberty (KP) groups. The C and KP groups received 1 mL of water/day; KL dams received kefir milk daily (10 CFU/mL) during lactation.

View Article and Find Full Text PDF

Environmental and population influences on mummichog () gut microbiomes.

Microbiol Spectr

January 2025

Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.

Unlabelled: The mummichog, , an abundant estuarine fish broadly distributed along the eastern coast of North America, has repeatedly evolved tolerance to otherwise lethal levels of aromatic hydrocarbon exposure. This tolerance is linked to reduced activation of the aryl hydrocarbon receptor (AHR) signaling pathway. In other animals, the AHR has been shown to influence the gastrointestinal-associated microbial community, particularly when activated by the model toxic pollutant 3,3',4,4',5-pentachlorobiphenyl (PCB-126) and other dioxin-like compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!