BK virus (BKV) infection causing end-organ disease remains a formidable challenge to the hematopoietic cell transplant (HCT) and kidney transplant fields. As BKV-specific treatments are limited, immunologic-based therapies may be a promising and novel therapeutic option for transplant recipients with persistent BKV infection. Here, we describe a whole-genome, deep-sequencing methodology and bioinformatics pipeline that identify BKV variants across the genome and at BKV-specific HLA-A2-, HLA-B0702-, and HLA-B08-restricted CD8 T-cell epitopes. BKV whole genomes were amplified using long-range PCR with four inverse primer sets, and fragmentation libraries were sequenced on the Ion Torrent Personal Genome Machine (PGM). An error model and variant-calling algorithm were developed to accurately identify rare variants. A total of 65 samples from 18 pediatric HCT and kidney recipients with quantifiable BKV DNAemia underwent whole-genome sequencing. Limited genetic variation was observed. The median number of amino acid variants identified per sample was 8 (range, 2 to 37; interquartile range, 10), with the majority of variants (77%) detected at a frequency of <5%. When normalized for length, there was no statistical difference in the median number of variants across all genes. Similarly, the predominant virus population within samples harbored T-cell epitopes similar to the reference BKV strain that was matched for the BKV genotype. Despite the conservation of epitopes, low-level variants in T-cell epitopes were detected in 77.7% (14/18) of patients. Understanding epitope variation across the whole genome provides insight into the virus-immune interface and may help guide the development of protocols for novel immunologic-based therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4572525 | PMC |
http://dx.doi.org/10.1128/JCM.01385-15 | DOI Listing |
Vet Immunol Immunopathol
December 2024
Department of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan. Electronic address:
The Hendra virus (HeV) has resulted in epidemics of respiratory and neurological illnesses in animals. Humans have contracted diseases with high fatality rates as a result of infected domestic animals, but effective vaccinations and therapies are currently not available against HeV. Herein, we analyzed the proteome of HeV and constructed an effective and innovative multi-epitope vaccine using immunoinformatics techniques.
View Article and Find Full Text PDFPLoS One
January 2025
School of Information and Technology, Wenzhou Business College, Wenzhou, Zhejiang, China.
Liver cancer is the sixth most frequent malignancy and the fourth major cause of deaths worldwide. The current treatments are only effective in early stages of cancer. To overcome the therapeutic challenges and exploration of immunotherapeutic options, broad spectral therapeutic vaccines could have significant impact.
View Article and Find Full Text PDFJ Infect
December 2024
ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Barcelona, Spain. Electronic address:
Objectives: We aimed to evaluate the adaptive immune responses' cross-recognition of the hypermutated SARS-CoV-2 BA.2.86 variant and identify the determinants influencing this recognition.
View Article and Find Full Text PDFMed Microbiol Immunol
December 2024
Grupo de Estudio en Parasitología Molecular (GEPAMOL), Faculty of Health Sciences, Centro de Investigaciones Biomédicas, Universidad del Quindío, Quindio, Armenia, Colombia.
Toxoplasma gondii infects approximately 30% of the population, and there is currently no approved vaccine. Identifying immunogenic peptides with high affinity to different HLA molecules is a promising vaccine strategy. This study used an in silico approach using artificial neural networks to identify T.
View Article and Find Full Text PDFBMC Mol Cell Biol
December 2024
Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
Cystic echinococcosis (CE) is a worldwide zoonotic public health issue. The reasons for this include a lack of specific therapy options, increasing antiparasitic drug resistance, a lack of control strategies, and the absence of an approved vaccine. The aim of the current study is to develop a multiepitope vaccine against CE by in-silico identification and using different Antigen B subunits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!