Mitochondrial disease: mimics and chameleons.

Pract Neurol

Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.

Published: December 2015

Mitochondrial diseases are inherited disorders of oxidative phosphorylation that present with a multitude of clinical features in different combinations and with various inheritance patterns. To complicate the issue further, the clinical features of mitochondrial disorders overlap with common neurological and non-neurological diseases. This presents a diagnostic challenge: when is a rare mitochondrial disease responsible for a more 'common or garden' neurological presentation, and how often are neurologists missing them in routine clinical practice? Here, we briefly review some common clinical features associated with mitochondrial disease, and provide some clues as to how patients with these mitochondrial disorders might be identified. We discuss both 'chameleons'-mitochondrial disorders that may look like something else, and 'mimics'-other conditions that may clinically resemble mitochondrial disease. The diagnosis sometimes needs highly specialised tests, but the advent of 'next generation' sequencing will simplify the clinical approach over the next few years.

Download full-text PDF

Source
http://dx.doi.org/10.1136/practneurol-2015-001191DOI Listing

Publication Analysis

Top Keywords

mitochondrial disease
16
clinical features
12
mitochondrial disorders
8
mitochondrial
7
clinical
5
disease mimics
4
mimics chameleons
4
chameleons mitochondrial
4
mitochondrial diseases
4
diseases inherited
4

Similar Publications

HCAR2 Modulates the Crosstalk between Mammary Epithelial Cells and Macrophages to Mitigate Staphylococcus aureus Infection in the Mouse Mammary Gland.

Adv Sci (Weinh)

January 2025

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China.

Staphylococcus aureus (S. aureus) is a major zoonotic pathogen, with mammary gland infections contributing to mastitis, a condition that poses significant health risks to lactating women and adversely affects the dairy industry. Therefore, understanding the immune mechanisms underlying mammary infections caused by S.

View Article and Find Full Text PDF

Identifying cellular and molecular mechanisms maintaining HIV-1 latency in the viral reservoir is crucial for devising effective cure strategies. Here we developed an innovative flow cytometry-fluorescent in situ hybridization (flow-FISH) approach for direct ex vivo reservoir detection without the need for reactivation using a combination of probes detecting abortive and elongated HIV-1 transcripts. Our flow-FISH assay distinguished between HIV-1-infected CD4+ T cells expressing abortive or elongated HIV-1 transcripts in PBMC from untreated and ART-treated PWH from the Amsterdam Cohort Studies.

View Article and Find Full Text PDF

Background: Bushen-Huoxue-Mingmu-Formula (MMF) has achieved definite clinical efficacy. However, its mechanism is still unclear.

Objective: Investigating the molecular mechanism of MMF to protect retinal ganglion cells (RGCs).

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) presents an escalating public health challenge globally. However, drug resistance has emerged as a major impediment to successful HCC treatment, limiting the efficacy of curative interventions. Despite numerous investigations into the diverse impacts of hsa-miR-125a-5p on tumor growth across different cancer types, its specific involvement in chemotherapy resistance in HCC remains elusive.

View Article and Find Full Text PDF

Fatty acid binding proteins (FABPs) are a class of small molecular mass intracellular lipid chaperone proteins that bind to hydrophobic ligands, such as long-chain fatty acids. FABP5 expression was significantly upregulated in the N-methyl-d-aspartic acid (NMDA) model, the microbead-induced chronic glaucoma model, and the DBA/2J mice. Previous studies have demonstrated that FABP5 can mediate mitochondrial dysfunction and oxidative stress in ischemic neurons, but the role of FABP5 in oxidative stress and cell death in retina NMDA injury models is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!