Fetuses with increased nuchal translucency thickness (NT) are at increased risk for chromosomal abnormalities. In case of a normal karyotype, a minority of them may present with structural abnormalities or genetic syndromes, which may be related to submicroscopic chromosomal imbalances. The objective of this study was to evaluate whether MLPA screening of 21 syndromic and subtelomeric regions could improve the detection rate of small chromosomal aberrations in fetuses with increased NT and a normal karyotype. A total of 106 prenatal samples from fetuses with NT ≥ 99th centile and normal R- and G-banding were analyzed by MLPA for subtelomeric imbalances (SALSA P036 and P070) and 21 syndromic regions (SALSA P245). One sample showed a benign CNV (dup(8)pter, FBXO25 gene), and 1 patient was found to have a loss of 18 qter and a gain of 5 pter as a result of an unbalanced translocation. The incidence of cryptic pathogenic variants was <1% or 2.7% when only fetuses with other ultrasound abnormalities were taken into account. Submicroscopic imbalances in fetuses with increased NT may be individually rare, and genome-wide screening seems more likely to improve the diagnostic yield in these fetuses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000435865 | DOI Listing |
PLoS One
December 2024
Specialized Neurological Practice, Neurological Office, Chrząstowice, Poland.
The study examines the morphometric development of the anterior cranial fossa in human fetuses and its clinical implications. The anterior cranial fossa, crucial for protecting the frontal lobes, was analyzed during prenatal development using innovative computer image processing techniques. We hypothesized that the growth of the anterior cranial fossa is not uniform throughout fetal development and that changing geometric relationships are important for possible therapeutic interventions in cases of congenital defects.
View Article and Find Full Text PDFMed Sci (Basel)
December 2024
Department of Perinatology, Ege University, İzmir 35000, Turkey.
Objective: This study aims to investigate the possible effects of gestational diabetes mellitus (GDM) on fetal heart structure and the relationship of this effect with maternal blood sugar control.
Materials And Methods: In this cross-sectional study, 19 women with GDM at 24-36 weeks of gestation (case group) and 21 healthy pregnant women at the same weeks of gestation (control group) were examined. Fetal heart structure was evaluated by ultrasonography; interventricular septum (IVS) thickness, right and left ventricular sphericity indices, global sphericity index (GSI) and cardio-thoracic ratio were also measured.
Front Immunol
December 2024
Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
Introduction: Toxoplasmosis is caused by the opportunistic, cosmopolitan protozoan is one of the most common parasitoses in the world. This parasite can pose a threat to people with immunodeficiency but also to the fetus, since the invasion can lead to miscarriages. Moreover, this parasite can contribute to economic losses in livestock farming.
View Article and Find Full Text PDFHypertens Pregnancy
December 2025
School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
Preeclampsia is a complex condition characterized by elevated blood pressure and organ damage involving kidneys or liver, resulting in significant morbidity and mortality for both the mother and the fetus. Increasing evidence suggests that oxidative stress, often caused by mitochondrial dysfunction within fetal trophoblast cells may play a major role in the development and progression of preeclampsia. Oxidative stress occurs as a result of an imbalance between the production of reactive oxygen species (ROS) and the capacity of antioxidant defenses, which can lead to placental cellular damage and endothelial cell dysfunction.
View Article and Find Full Text PDFZhongguo Dang Dai Er Ke Za Zhi
December 2024
Department of Neonatology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China.
Objectives: To observe the reparative effects of human umbilical cord mesenchymal stem cell (hUC-MSC) transplantation on white matter injury (WMI) in neonatal rats and explore its mechanism through the nuclear factor-kappa B (NF-κB) signaling pathway mediated by microglial cells.
Methods: Sprague-Dawley rats, aged 2 days, were randomly divided into three groups: sham-operation,WMI, and hUC-MSC (=18 each). Fourteen days after modeling, hematoxylin-eosin staining was used to observe pathological changes in the white matter, and immunofluorescence staining was used to measure the expression level of ionized calcium-binding adapter molecule 1 (Iba1).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!