Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with an increasing incidence worldwide. Apolipoprotein M (apoM) is a novel apolipoprotein that is mainly expressed in liver and kidney tissues. However, the anti-tumor properties of apoM remain largely unknown. We evaluated the anti-tumor activities and mechanisms of apoM in HCC both in vivo and in vitro. Bioinformatic analysis and luciferase reporter assay results showed that apoM was a potential target of hsa-miR-573 and was downregulated after transfection with hsa-miR-573 mimics. Overexpression of apoM suppressed migration, invasion, and proliferation of hepatoma cells in vitro. Overexpression of hsa-miR-573 in hepatoma cells reduced apoM expression, leading to promotion of the invasion, migration, and proliferation of hepatoma cells in vitro. In addition, hsa-miR-573 markedly promoted growth of xenograft tumors in nude mice with an accompanying reduction in cell apoptosis. ApoM markedly inhibited growth of xenograft tumors in nude mice and promoted cell apoptosis. Moreover, Bcl2A1 mRNA and protein levels were inhibited by apoM overexpression and an increase in apoptosis rate by apoM was markedly compensated by Bcl2A1 overexpression in HepG2 cells. These results provide evidence that hsa-miR-573 promoted tumor growth by inhibition of hepatocyte apoptosis and this pro-tumor effect might be mediated through Bcl2A1 in an apoM-dependent manner. Therefore, our findings may be useful to improve understanding of the critical effects of hsa-miR-573 and apoM in HCC pathogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10495-015-1153-x | DOI Listing |
BMC Pharmacol Toxicol
January 2025
Biochemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
Background: Naringenin, a flavonoid compound found in citrus fruits, possesses valuable anticancer properties. However, its potential application in cancer treatment is limited by poor bioavailability and pharmacokinetics at tumor sites. To address this, Naringenin nanoparticles (NARNPs) were prepared using the emulsion diffusion technique and their anticancer effects were investigated in HepG2 cells.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
Hepatocellular carcinoma (HCC) necessitates innovative prognostic biomarkers and therapeutic targets. By investigating PNMA1 in HCC via the TCGA and GEO databases and our clinical data, we found that its overexpression is associated with worse survival. The relevance of PNMA1 extends to immune factors such as M1 macrophages, CD8 T cells, and immune checkpoints.
View Article and Find Full Text PDFClin Exp Med
January 2025
Department of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
Donafenib is an improved version of sorafenib in which deuterium is substituted into the drug's chemical structure, enhancing its stability and antitumor activity. Donafenib exhibits enhanced antitumor activity and better tolerance than sorafenib in preclinical and clinical studies. However, the specific mechanism of its effect on hepatocellular carcinoma has not been reported.
View Article and Find Full Text PDFNPJ Vaccines
January 2025
First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
Hepatocellular carcinoma (HCC) is a highly prevalent malignancy with limited treatment efficacy despite advances in immune checkpoint blockade (ICB) therapy. The inherently weak immune responses in HCC necessitate novel strategies to improve anti-tumor immunity and synergize with ICB therapy. Kinesin family member 20A (KIF20A) is a tumor-associated antigen (TAA) overexpressed in HCC, and it could be a promising target for vaccine development.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Basic Medicine, Qingdao University, Qingdao 266071, China. Electronic address:
Fructose-1,6-bisphosphatase 1 (FBP1) is a key gluconeogenic enzyme that plays complex and context-dependent roles in cancer biology. This review comprehensively examines FBP1's dual functions as both a tumor suppressor and an oncogene across various cancer types. In many cancers, such as hepatocellular carcinoma, clear cell renal cell carcinoma, and lung cancer, downregulation of FBP1 contributes to tumor progression through metabolic reprogramming, promoting glycolysis, and altering the tumor microenvironment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!