The high reutilization value potential of high-salinity anchovy fishmeal wastewater through microbial degradation.

World J Microbiol Biotechnol

Department of Biotechnology and Bioengineering, Pukyong National University, Busan, 608-737, Republic of Korea.

Published: October 2015

To provide an option for the reutilization of high-salinity anchovy fishmeal wastewater (FMW), generated during the anchovy fishmeal manufacturing processes, its potential for biodegradation was assessed in 1-l five-neck flasks using a halotolerant and proteolytic microbial consortium. During the first 41 h of biodegradation, the pH, DO, ORP, and dry-sludge weight decreased as the total cell number of the microbial consortium increased steadily; the COD(Cr)/TN ratios remained between 4.0 and 5.5, respectively, indicating the stable metabolic degradation of organic matter. The ORP tended to increase after 41 h, and the unpleasant fishy smell disappeared once positive ORP values were achieved. The removal percentages of COD(Cr) and TN were 59.0 and 54.4%, respectively, and the dry-sludge weight decreased from 115.5 to 68.0 g, with a degradation rate of 0.59 g h(-1), during the 80 h experiment. The supernatant from the culture of the anchovy FMW at 70 h (culture supernatant) was phytotoxin-free, and the level of total amino acids was 8.04 g 100 g(-1), comparable to that of commercial fertilizers. In hydroponic cultures containing red bean and barley, the culture supernatant demonstrated a good fertilizing ability. The culture supernatant also exhibited a high degree of antioxidant activity, with a 52.3% hydroxyl radical-scavenging activity and 0.16 reducing power (at OD 700 nm). Moreover, the culture supernatant inhibited DNA damage from hydroxyl radicals, enhancing the reutilization value of anchovy FMW. This report presents the first description of high-salinity anchovy FMW possessing a high reutilization value potential both for agriculture and medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11274-015-1906-2DOI Listing

Publication Analysis

Top Keywords

culture supernatant
16
high-salinity anchovy
12
anchovy fishmeal
12
anchovy fmw
12
high reutilization
8
reutilization potential
8
fishmeal wastewater
8
microbial consortium
8
dry-sludge weight
8
weight decreased
8

Similar Publications

Recently, we demonstrated that the oncolytic Coxsackievirus B3 (CVB3) strain PD-H can be efficiently adapted to resistant colorectal cancer cells through dose-dependent passaging in colorectal cancer cells. However, the method is time-consuming, which limits its clinical applicability. Here, we investigated whether the manufacturing time of the adapted virus can be reduced by replacing the dose-based passaging with volume-based passaging.

View Article and Find Full Text PDF

Background/objectives: DNA vaccines are rapidly produced and adaptable to different pathogens, but they face considerable challenges regarding stability and delivery to the cellular target. Thus, effective delivery methods are essential for the success of these vaccines. Here, we evaluated the efficacy of capsules derived from the cell wall of the yeast as a delivery system for DNA vaccines.

View Article and Find Full Text PDF

Extracellular vesicles (EVs), including exosomes, are promising pharmaceutical modalities. They are purified from cell culture supernatant; however, the preparation may contain EVs with the desired therapeutic effects and different types of EVs, lipoproteins, and soluble proteins. Evaluating the composition of particulate impurities and the levels of protein impurities in final preparations is critical for quality control.

View Article and Find Full Text PDF

Tetanus neurotoxins (TeNT) and botulinum neurotoxins (BoNTs) are closely related ~150 kDa protein toxins that together comprise the group of clostridial neurotoxins (CNTs) expressed by various species of . While TeNT is expressed as a single polypeptide, BoNTs are always produced alongside multiple non-toxic proteins that form a stabilizing complex with BoNT and are encoded in a conserved toxin gene cluster. It is unknown how evolved without a similar gene cluster and why complex-free TeNT is secreted as a stable and soluble protein by , whereas complexing proteins appear to be essential for BoNT stability in culture supernatants of .

View Article and Find Full Text PDF

Hepatitis E virus (HEV) exists in two distinct forms: a non-enveloped form (neHEV), which is present in feces and bile, and a quasi-enveloped form (eHEV), found in circulating blood and culture supernatants. This study aimed to elucidate the roles of Ras-associated binding 13 (Rab13) and protein kinase A (PKA) in the entry mechanisms of both eHEV and neHEV, utilizing small interfering RNA (siRNA) and chemical inhibitors. The results demonstrated that the entry of both viral forms is dependent on Rab13 and PKA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!