Alcoholic steatosis, instead of being innocuous, plays a critical role in liver inflammation and fibrogenesis. The severity of fatty liver is governed by the concerted balance between lipid transport, synthesis, and degradation. Whereas scavenger receptor class B, type I (SR-B1) is critical for reverse cholesterol uptake by the liver, peroxisome proliferator-activated receptor-gamma (PPARγ) coactivator-1α and -β (PGC1α and PGC1β) are critical for lipid degradation and synthesis, respectively. Because betaine is a lipotropic agent, we have evaluated its effects on alcoholic steatosis. Betaine effectively prevented chronic alcohol-mediated (i) impaired SR-B1 glycosylation, plasma membrane localization, and consequent impaired cholesterol transport; and (ii) up regulation of PGC-1β, sterol regulatory element-binding protein 1c and downstream lipogenic genes with concomitant increased liver cholesterol, triglycerides and hepatic lipid score. Similarly, because of its anti-inflammatory and anti-fibrotic effects in other organs, we evaluated the protective effects of thymosin β4 (Tβ4) against carbon tetrachloride (CCl4)-induced hepatotoxicity in rat. Tβ4 prevented CCl4-induced (i) necrosis, inflammatory infiltration and up-regulation of α1(2)collagen, alpha-smooth muscle actin (α-SMA), platelet derived growth factor beta (PDGF-β) receptor and fibronectin mRNA expression; (ii) down-regulation of adipogenic gene, PPARγ and the up-regulation of epigenetic repressor gene, methyl CpG binding protein 2 (MeCP2) mRNA levels, suggesting that the anti-fibrogenic actions of Tβ4 involve the prevention of trans-differentiation of quiescent hepatic stellate cells into myo-fibroblasts largely by up-regulating PPARγ and by down-regulating MeCP2 genes. We therefore conclude that betaine and Tβ4 can effectively protect against alcoholic hepatosteatosis and hepatic fibrogenesis, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12072-014-9526-8DOI Listing

Publication Analysis

Top Keywords

inflammation fibrogenesis
8
alcoholic steatosis
8
novel modulators
4
modulators hepatosteatosis
4
hepatosteatosis inflammation
4
fibrogenesis alcoholic
4
steatosis innocuous
4
innocuous plays
4
plays critical
4
critical role
4

Similar Publications

One of the outstanding features of chronic hepatitis B infection (CHB) is its strong association with liver fibrosis. CHB induced inflammation and injury trigger multiple biochemical and physical changes that include the promotion of a wide range of cytokines, chemokines and growth factors that activate hepatic stellate cells (HSCs) CHB induced activation of hepatic stellate cells (HSCs) is regarded as a central event in fibrogenesis to directly promote the synthesis of myofibroblasts and the expression of a range of materials to repair injured liver tissue. Fibrogenesis is modulated by the mainstream epigenetic machinery, as well as by non-coding RNA (ncRNA) that are often referred to as an ancillary epigenetic response to fine tune gene expression.

View Article and Find Full Text PDF

Graphene Quantum Dots as Antifibrotic Therapy for Kidney Disease.

ACS Appl Bio Mater

January 2025

Department of Internal Medicine, College of Medicine, Seoul National University, Seoul 03080, Korea.

Graphene quantum dots (GQDs) have received much attention for their biomedical applications, such as bioimaging and drug delivery. Additionally, they have antioxidant and anti-inflammatory properties. We used GQDs to treat renal fibrosis and confirmed their ability to protect renal cells from excessive oxidative stress in vitro and in vivo.

View Article and Find Full Text PDF

Cardiorenal syndrome (CRS) is represented as an intricate dysfunctional interplay between the heart and kidneys, marked by cardiorenal inflammation and fibrosis. Unlike other organs, the repair process in cardiorenal injury involves a regenerative phase characterized by proliferation and polyploidization, followed by a subsequent pathogenic phase of fibrosis. In CRS, acute or chronic cardiorenal injury leads to hyperactive inflammation and fibrotic remodeling, associated with injury-mediated immune cell (Macrophages, Monocytes, and T-cells) infiltration and myofibroblast activation.

View Article and Find Full Text PDF

Macrophages and Pulmonary Fibrosis.

Curr Mol Med

January 2025

Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China.

Most chronic respiratory diseases often lead to the clinical manifestation of pulmonary fibrosis. Inflammation and immune disorders are widely recognized as primary contributors to the onset of pulmonary fibrosis. Given that macrophages are predominantly responsible for inflammation and immune disorders, in this review, we first focused on the role of different subpopulations of macrophages in the lung and discussed the crosstalk between macrophages and other immune cells, such as neutrophils, regulatory T cells, NKT cells, and B lymphocytes during pulmonary fibrogenesis.

View Article and Find Full Text PDF

Understanding how inflammatory cytokines influence profibrogenic wound healing responses in fibroblasts is important for understanding the pathogenesis of fibrosis. TNF-α and IL-13 are key cytokines in Th1 and Th2 immune responses, respectively, while TGF-β1 is the principal pro-fibrotic mediator. We show that 12-day fibroblast culture with TNF-α or IL-13 induces fibrogenesis, marked by progressively increasing type III and VI collagen formation, and that TGF-β1 co-stimulation amplifies these effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!