Analysis of the SUMO2 Proteome during HSV-1 Infection.

PLoS Pathog

MRC-University of Glasgow Centre for Virus Research, The Sir Michael Stoker Building, University of Glasgow Garscube Campus, Glasgow, Scotland, United Kingdom.

Published: July 2015

Covalent linkage to members of the small ubiquitin-like (SUMO) family of proteins is an important mechanism by which the functions of many cellular proteins are regulated. Sumoylation has roles in the control of protein stability, activity and localization, and is involved in the regulation of transcription, gene expression, chromatin structure, nuclear transport and RNA metabolism. Sumoylation is also linked, both positively and negatively, with the replication of many different viruses both in terms of modification of viral proteins and modulation of sumoylated cellular proteins that influence the efficiency of infection. One prominent example of the latter is the widespread reduction in the levels of cellular sumoylated species induced by herpes simplex virus type 1 (HSV-1) ubiquitin ligase ICP0. This activity correlates with relief from intrinsic immunity antiviral defence mechanisms. Previous work has shown that ICP0 is selective in substrate choice, with some sumoylated proteins such the promyelocytic leukemia protein PML being extremely sensitive, while RanGAP is completely resistant. Here we present a comprehensive proteomic analysis of changes in the cellular SUMO2 proteome during HSV-1 infection. Amongst the 877 potentially sumoylated species detected, we identified 124 whose abundance was decreased by a factor of 3 or more by the virus, several of which were validated by western blot and expression analysis. We found many previously undescribed substrates of ICP0 whose degradation occurs by a range of mechanisms, influenced or not by sumoylation and/or the SUMO2 interaction motif within ICP0. Many of these proteins are known or are predicted to be involved in the regulation of transcription, chromatin assembly or modification. These results present novel insights into mechanisms and host cell proteins that might influence the efficiency of HSV-1 infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4511656PMC
http://dx.doi.org/10.1371/journal.ppat.1005059DOI Listing

Publication Analysis

Top Keywords

hsv-1 infection
12
sumo2 proteome
8
proteome hsv-1
8
cellular proteins
8
involved regulation
8
regulation transcription
8
proteins influence
8
influence efficiency
8
sumoylated species
8
proteins
7

Similar Publications

Lactobacilli-Derived Postmetabolites Are Broad-Spectrum Inhibitors of Herpes Viruses In Vitro.

Int J Mol Sci

December 2024

Department of Virology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26, Georgi Bonchev Str., 1113 Sofia, Bulgaria.

Herpes viruses are highly contagious agents affecting all classes of vertebrates, thus causing serious health, social, and economic losses. Within the One Health concept, novel therapeutics are extensively studied for both veterinary and human control and management of the infection, but the optimal strategy has not been invented yet. Lactic acid bacteria are key components of the microbiome that are known to play a protective role against pathogens as one of the proposed mechanisms involves compounds released from their metabolic activity.

View Article and Find Full Text PDF

Purpose: To ascertain the homing of monocytes and neutrophils in the epithelium versus stroma of HSV-1 infected corneas at different stages of infection and functional significance of their anatomical location in virus-infected corneas.

Methods: The corneas of C57BL/6J mice were infected with HSV-1 McKrae. Mice were euthanized on different days post-infection.

View Article and Find Full Text PDF

Laminaran potentiates cGAS-STING signaling to enhance antiviral responses.

Int Immunopharmacol

January 2025

School of Life Science and Technology, China Pharmaceutical University, Nanjing, China; Department of Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong, China. Electronic address:

Cyclic GMP-AMP synthase (cGAS)-Stimulator of interferon genes (STING) signaling pathway, an essential element in the innate antiviral immune responses, has emerged as a key component of innate immune system to modulate type I IFNs production and response by recognizing both exogenous and endogenous DNA. Although some cGAS-STING signaling small molecule agonists have been developed, there are few natural polysaccharides reported to activate cGAS-STING signaling for the treatment of infectious diseases. Here, we reported that Laminaran, a low molecular weight β-glucan storage polysaccharide present in brown algae, potentiates cGAS-STING signaling to promote type I IFNs production and antiviral response.

View Article and Find Full Text PDF

Phenazine biosynthesis-like domain-containing protein (PBLD) and Cedrelone have been identified as tumor suppressors. However, their roles in virus infection remain unclear. Here, we demonstrate that PBLD upregulates the type I interferon (IFN-I) response through activating NF-kappaB (NF-κB) signaling pathway to resist viral infection in cells and mice.

View Article and Find Full Text PDF

Background: Approximately 2% of HerpeSelect herpes simples virus type 2 (HSV-2) IgG enzyme immunoassay (screen assay) sera-positive samples do not confirm using an HSV-2 IgG inhibition assay. Of these, roughly 1.33% are confirmed negative, and a small proportion (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!