Titin is a giant filamentous protein of the muscle sarcomere in which stretch induces the unfolding of its globular domains. However, the mechanisms of how domains are progressively selected for unfolding and which domains eventually unfold have for long been elusive. Based on force-clamp optical tweezers experiments we report here that, in a paradoxical violation of mechanically driven activation kinetics, neither the global domain unfolding rate, nor the folded-state lifetime distributions of full-length titin are sensitive to force. This paradox is reconciled by a gradient of mechanical stability so that domains are gradually selected for unfolding as the magnitude of the force field increases. Atomic force microscopic screening of extended titin molecules revealed that the unfolded domains are distributed homogenously along the entire length of titin, and this homogeneity is maintained with increasing overstretch. Although the unfolding of domains with progressively increasing mechanical stability makes titin a variable viscosity damper, the spatially randomized variation of domain stability ensures that the induced structural changes are not localized but are distributed along the molecule's length. Titin may thereby provide complex safety mechanims for protecting the sarcomere against structural disintegration under excessive mechanical conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4621543 | PMC |
http://dx.doi.org/10.1016/j.bpj.2015.06.002 | DOI Listing |
Hepatology
January 2025
Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
Background Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) affects about a third of adults worldwide and is projected soon to be the leading cause of cirrhosis. It occurs when fat accumulates in hepatocytes and can progress to metabolic dysfunction-associated steatohepatitis (MASH), liver cirrhosis, and hepatocellular carcinoma. MASLD pathogenesis is believed to involve a combination of genetic and environmental risk factors.
View Article and Find Full Text PDFArq Bras Oftalmol
January 2025
School of International Education, China University of Petroleum (East China), Qingdao, Shandong, China.
This article systematically reviewed 327 documents in the core collection of the Web of Science database regarding ChatGPT applications in the writing domain. This study aimed to comprehensively assess the latest progress and potential applications. ChatGPT demonstrates significant potential in overcoming writing anxiety, improving writing efficiency, generating initial scientific papers, and assisting researchers and students in giving feedback.
View Article and Find Full Text PDFNanomedicine (Lond)
January 2025
Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
Background: Gene therapy is garnering increasing support due to its potential for a "once-delivered, lifelong benefit." The limitations of traditional gene delivery methods have spurred the advancement of bionanomaterials. Despite this progress, a thorough analysis of the evolution, current state, key contributors, focal studies, and future directions of nanomaterials in gene delivery remains absent.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemical and Biological Physics, Weizmann Institute of Science Rehovot 761001 Israel
Proteins often harness extensive motions of domains and subunits to promote their function. Deciphering how these movements impact activity is key for understanding life's molecular machinery. The enzyme adenylate kinase is an intriguing example for this relationship; it ensures efficient catalysis by large-scale domain motions that lead to the enclosure of the bound substrates ATP and AMP.
View Article and Find Full Text PDFCureus
December 2024
Research, Nibbot International, Mexico City, MEX.
Background: Autism spectrum disorder (ASD) is a heterogeneous neurobiological condition characterized by behavioral problems and delayed neurodevelopment. Although transcranial magnetic stimulation (TMS) has been proposed as an alternative treatment for patients with ASD because of its promising benefits in reducing repetitive behaviors and enhancing executive functions, the use of high-intensity pulses (Hi-TMS) appears to be related to the side effects of the therapy. Low-intensity TMS (Li-TMS) has been partially investigated, but it may have clinical effects on ASD and simultaneously increase treatment safety.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!