Clinical Correlates and Prognostic Significance of Lateralized Periodic Discharges in Patients Without Acute or Progressive Brain Injury: A Case-Control Study.

J Clin Neurophysiol

*Department of Neurology, University of Iowa College of Medicine, Iowa City, Iowa, U.S.A.; †Department of Neurology, Stony Brook University Medical Center, New York City, New York, U.S.A.; ‡Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, U.S.A.; and §Department of Neurology, Hôpital Erasme-ULB, Cliniques Universitaires de Bruxelles, Bruxelles, Belgium.

Published: December 2015

Purpose: Lateralized periodic discharges (LPDs, also known as periodic lateralized epileptiform discharges) in conjunction with acute brain injuries are known to be associated with worse prognosis but little is known about their importance in absence of such acute injuries. We studied the clinical correlates and outcome of patients with LPDs in the absence of acute or progressive brain injury.

Methods: This is a case-control study of 74 patients with no acute brain injury undergoing continuous EEG monitoring, half with LPDs and half without, matched for age and etiology of remote brain injury, if any, or history of epilepsy.

Results: Lateralized periodic discharges were found in 145/1785 (8.1%) of subjects; 37/145 (26%) had no radiologic evidence of acute or progressive brain injury. Those with LPDs were more likely to have abnormal consciousness (86% vs. 57%; P = 0.005), seizures (70% vs. 24%; P = 0.0002), and functional decline (62% vs. 27%; P = 0.005), and were less likely to be discharged home (24% vs. 62%; P = 0.002). On multivariate analysis, LPDs and status epilepticus were associated with abnormal consciousness (P = 0.009; odds ratio = 5.2, 95% CI = 1.60-20.00 and P = 0.017; odds ratio = 5.0, 95% CI = 1.4-21.4); and LPDs were independently associated with functional decline (P = 0.001; odds ratio = 4.8, 95% CI = 1.6-15.4) and lower likelihood of being discharged home (P = 0.009; odds ratio = 0.2, 95% CI = 0.04-0.6).

Conclusions: Despite absence of acute or progressive brain injury, LPDs were independently associated with abnormal consciousness and worse outcome at hospital discharge.

Download full-text PDF

Source
http://dx.doi.org/10.1097/WNP.0000000000000206DOI Listing

Publication Analysis

Top Keywords

brain injury
20
acute progressive
16
progressive brain
16
odds ratio
16
ratio 95%
16
lateralized periodic
12
periodic discharges
12
absence acute
12
abnormal consciousness
12
clinical correlates
8

Similar Publications

Background: The hypobaric hypoxic atmosphere can cause adverse reactions or sickness. The purpose of this study was to explore the preventive effect and mechanism of human umbilical cord mesenchymal stem cells (hUC-MSCs) on acute pathological injury in mice exposed to high-altitude.

Methods: We pretreated C57BL/6 mice with hUC-MSCs via the tail vein injection, and then the mice were subjected to hypobaric hypoxic conditions for five days.

View Article and Find Full Text PDF

The transcriptional response of cortical neurons to concussion reveals divergent fates after injury.

Nat Commun

January 2025

Unit on the Development of Neurodegeneration, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.

Traumatic brain injury (TBI) is a risk factor for neurodegeneration, however little is known about how this kind of injury alters neuron subtypes. In this study, we follow neuronal populations over time after a single mild TBI (mTBI) to assess long ranging consequences of injury at the level of single, transcriptionally defined neuronal classes. We find that the stress-responsive Activating Transcription Factor 3 (ATF3) defines a population of cortical neurons after mTBI.

View Article and Find Full Text PDF

Axons in the mammalian brain show significant diversity in myelination motifs, displaying spatial heterogeneity in sheathing along individual axons and across brain regions. However, its impact on neural signaling and susceptibility to injury remains poorly understood. To address this, we leveraged cable theory and developed model axons replicating the myelin sheath distributions observed experimentally in different regions of the mouse central nervous system.

View Article and Find Full Text PDF

Diabetes Mellitus Impairs Blood-Brain Barrier Integrality and Microglial Reactivity.

J Biophotonics

January 2025

Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China.

Diabetes mellitus (DM), a chronic metabolic disorder that adversely affects the blood-brain barrier (BBB) and microglial function in the central nervous system (CNS), contributing to neuronal damage and neurodegenerative diseases. However, the underlying molecular mechanisms linking diabetes to BBB dysfunction and microglial dysregulation remain poorly understood. Here, we assessed the impacts of diabetes on BBB and microglial reactivity and investigated its mechanisms.

View Article and Find Full Text PDF

hESC-derived extracellular vesicles enriched with MFGE-8 and the GSH redox system act as senotherapeutics for neural stem cells in ischemic stroke.

Free Radic Biol Med

January 2025

Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea. Electronic address:

Human embryonic stem cells (hESCs) and their extracellular vesicles (EVs) hold significant potential for tissue repair and regeneration. Neural stem cells (NSCs) in the adult brain often acquire senescent phenotypes after ischemic injuries, releasing neurodegenerative senescence-associated secretory phenotype factors. In this study, we investigated the senotherapeutic effects of hESC-EVs on NSCs and confirmed their neuroprotective effects in neurons via rejuvenation of NSC secretions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!