In biodiversity conservation, habitat corridors are assumed to increase landscape-level connectivity and to enhance the viability of otherwise isolated populations. While the role of corridors is supported by empirical evidence, studies have typically been conducted at small spatial scales. Here, we assess the quality and the functionality of a large 95-km long forest corridor connecting two large national parks (416 and 311 km2) in the southeastern escarpment of Madagascar. We analyze the occurrence of 300 species in 5 taxonomic groups in the parks and in the corridor, and combine high-resolution forest cover data with a simulation model to examine various scenarios of corridor destruction. At present, the corridor contains essentially the same communities as the national parks, reflecting its breadth which on average matches that of the parks. In the simulation model, we consider three types of dispersers: passive dispersers, which settle randomly around the source population; active dispersers, which settle only in favorable habitat; and gap-avoiding active dispersers, which avoid dispersing across non-habitat. Our results suggest that long-distance passive dispersers are most sensitive to ongoing degradation of the corridor, because increasing numbers of propagules are lost outside the forest habitat. For a wide range of dispersal parameters, the national parks are large enough to sustain stable populations until the corridor becomes severely broken, which will happen around 2065 if the current rate of forest loss continues. A significant decrease in gene flow along the corridor is expected after 2040, and this will exacerbate the adverse consequences of isolation. Our results demonstrate that simulation studies assessing the role of habitat corridors should pay close attention to the mode of dispersal and the effects of regional stochasticity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4511669PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0132126PLOS

Publication Analysis

Top Keywords

habitat corridors
12
national parks
12
biodiversity conservation
8
corridor
8
forest corridor
8
simulation model
8
passive dispersers
8
dispersers settle
8
active dispersers
8
forest
5

Similar Publications

Climate change and human disturbance are critical factors affecting the habitat distribution of wild animals, with implications for management strategies such as protecting migration corridors, habitat restoration, and species conservation. In the Hupingshan National Nature Reserve (NNR), Reeve's muntjac () is a key prey species for the South China tiger (), which is extinct in the wild and targeted for reintroduction by the Chinese government. Thus, understanding the habitat distribution and abundance of Reeve's muntjac is essential to ensure the survival and sustainability of reintroduced tiger populations.

View Article and Find Full Text PDF

Large-scale reforestation is promoted as an important strategy to mitigate climate change and biodiversity loss. A persistent challenge for efforts to restore ecosystems at scale is how to accelerate ecological processes, particularly natural regeneration. Yet, despite being recognized as an important barrier to the recovery of diverse plant communities in tropical agricultural landscapes, the impacts of dispersal limitation on natural regeneration in secondary forests-and especially how this changes as these forests grow older-are still poorly studied.

View Article and Find Full Text PDF

Monitoring genetic diversity of Torminalis glaberrima for resilient forests in the face of population fragmentation.

Ann Bot

January 2025

Unit of Ecological Genetics, Institute of Forest Biodiversity and Nature Conservation, Austrian Research Centre for Forests (BFW), Seckendorff-Gudent-Weg 8, Vienna, Vienna.

Background And Aims: Torminalis glaberrima (Gand.) Sennikov & Kurtto is a European tree species currently underutilized in forestry, valued for its high-quality wood and contribution to ecosystem stability. Despite a projected range expansion as climate change progresses, current population fragmentation levels may inhibit the species' ability to migrate and stabilize fragile forest ecosystems.

View Article and Find Full Text PDF

Ranger patrols are essential for biodiversity conservation, particularly in protected areas where they help mitigate poaching of large mammals. Effective patrols reduce poaching and support higher population densities of large mammals. This study investigates the impact of ranger patrols on large mammal sightings in the Central Alborz Protected Area (CAPA), northern Iran, a crucial wildlife corridor with UNESCO-listed Hyrcanian forests and high-altitude grasslands.

View Article and Find Full Text PDF

The two main extensions of rain forest in South America are the Amazon (Amazônia) and the Atlantic rain forest (Mata Atlântica), which are separated by a wide 'dry diagonal' of seasonal vegetation. We used the species-rich tree genus to test if Amazônia-Mata Atlântica dispersals have been clustered during specific time periods corresponding to past, humid climates. We performed hybrid capture DNA sequencing of 810 nuclear loci for 453 accessions representing 164 species that included 62% of Mata Atlântica species and estimated a dated phylogeny for all accessions using maximum likelihood, and a species-level tree using coalescent methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!