A new lipophilic Ru salen complex with cholesterol groups can be efficiently incorporated into liposome bilayers, allowing the photoinduced release of nitric oxide (NO) and the membrane transport of NO to coexisting liposomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5dt02352a | DOI Listing |
Arch Biochem Biophys
January 2025
Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University, (Erstwhile: North Orissa University), Baripada, Odisha 757003, India. Electronic address:
Our previous study revealed that lipid flip-flop inducing phytochemicals from Gymnema sylvestre increase membrane permeability of antimicrobials in S. aureus. However, their lipid flipping and membrane permeabilizing effect on methicillin resistant S.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
State Key Laboratory of Pathogenesis Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology Xinjiang Medical University, Urumqi, 830011, People's Republic of China.
Purpose: A synergistic treatment strategy of phototherapy and chemotherapy has been shown to improve efficacy and offer unique advantages over monotherapy. The purpose of this study is to explore a new nanocarrier system with liposome as the inner membrane and erythrocyte membrane as the outer membrane, which aims to realize the leak-free load of phototherapy drug indocyanine green (ICG) and chemotherapy drug doxorubicin (DOX), prolong the circulation time in vivo and improve the therapeutic effect.
Patients And Methods: In this study, bilayer membrane-loaded ICG and DOX nanoparticles (RBC@ICG-DOX NPs) were prepared and characterized.
Liposomal doxorubicin (Dox), a treatment option for recurrent ovarian cancer, often suffers from suboptimal biodistribution and efficacy, which might be addressed with precision drug delivery systems. Here, we introduce a catheter-based endoscopic probe designed for multispectral, quantitative monitoring of light-triggered drug release. This tool utilizes red-light photosensitive porphyrin-phospholipid (PoP), which is encapsulated in liposome bilayers to enhance targeted drug delivery.
View Article and Find Full Text PDFJ Biol Inorg Chem
January 2025
Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA.
Lipid nanoparticles formed with copolymers are a new and increasingly powerful tool for studying membrane proteins, but the extent to which these systems affect the physical properties of the membrane is not completely understood. This is critical to understanding the caveats of these new systems and screening for structural and functional artifacts that might be caused in the membrane proteins they are used to study. To better understand these potential effects, the fluid properties of dipalmitoylphosphatidylcholine lipid bilayers were examined by electron paramagnetic resonance (EPR) spectroscopy with spin-labeled reporter lipids in either liposomes or incorporated into nanoparticles with the copolymers diisobutylene-maleic acid or styrene maleic acid.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Universite Libre de Bruxelles, Engineering of Molecular NanoSystems, Avenue F. Roosevelt 50, 1050, Brussels, BELGIUM.
Artificial anion transporters offer a potential way to treat deficiencies in cellular anion transport of genetic origins. In contrast to the large variety of mobile anion carriers and self-assembled anion channels reported, unimolecular anion channels are less investigated. Herein, we present a unique example of a unimolecular anion channel based on a bambusuril (BU) macrocycle, a well-established anion receptor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!