The small intestine is a complex system that carries out various functions. The main function of enterocytes is absorption of nutrients, whereas membranous cells (M cells) are responsible for delivering antigens/foreign substances to the mucosal lymphoid tissues. However, to get a fundamental understanding of how cellular structures contribute to physiological processes, precise knowledge about surface morphologies, cytoskeleton organizations and biomechanical properties is necessary. Atomic force microscopy (AFM) was used here as a powerful tool to study surface topographies of Caco-2 cells and M cells. Furthermore, cell elasticity (i.e., the mechanical response of a cell on a tip indentation), was elucidated by force curve measurements. Besides elasticity, adhesion was evaluated by recording the attraction and repulsion forces between the tip and the cell surface. Organization of F-actin networks were investigated via phalloidin labeling and visualization was performed with confocal laser scanning fluorescence microscopy (CLSM) and scanning electron microscopy (SEM). The results of these various experimental techniques revealed significant differences in the cytoskeleton/microvilli arrangements and F-actin organization. Caco-2 cells displayed densely packed F-actin bundles covering the entire cell surface, indicating the formation of a well-differentiated brush border. In contrast, in M cells actins were arranged as short and/or truncated thin villi, only available at the cell edge. The elasticity of M cells was 1.7-fold higher compared to Caco-2 cells and increased significantly from the cell periphery to the nuclear region. Since elasticity can be directly linked to cell adhesion, M cells showed higher adhesion forces than Caco-2 cells. The combination of distinct experimental techniques shows that morphological differences between Caco-2 cells and M cells correlate with mechanical cell properties and provide useful information to understand physiological processes/mechanisms in the small intestine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4505173 | PMC |
http://dx.doi.org/10.3762/bjnano.6.151 | DOI Listing |
The diverse microbiota of the intestine is expected to benefit the host, yet the beneficial metabolites derived from the microbiota are still poorly understood. Enterobactin (Ent) is a well- known secreted iron-scavenging siderophore made by bacteria to fetch iron from the host or environment. Little was known about a positive role of Ent until a recent discovery in the nematode indicated a beneficial role of Ent in promoting mitochondrial iron level in the animal intestine.
View Article and Find Full Text PDFThe diverse microbiota of the intestine is expected to benefit the host, yet the beneficial metabolites derived from the microbiota are still poorly understood. Enterobactin (Ent) is a well-known secreted iron-scavenging siderophore made by bacteria to fetch iron from the host or environment. Little was known about a positive role of Ent until a recent discovery in the nematode C.
View Article and Find Full Text PDFRegul Toxicol Pharmacol
January 2025
Division of Applied Regulatory Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, The U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States of America. Electronic address:
The static Caco-2 monolayer is an extensively utilized model for predicting the permeability of small molecules during the drug development process. While these cells can differentiate and develop key functional and morphological features that emulate human enterocytes, they do not fully replicate the complexity of human intestinal physiology. In this study, we investigated functional and morphological aspects of Caco-2 cells, alongside their transcriptomic profiles, with a particular emphasis on genes encoding drug-metabolizing enzymes and drug transporters.
View Article and Find Full Text PDFFoodborne Pathog Dis
January 2025
College of Biological Sciences and Technology, Yangzhou University, Yangzhou, China.
PrfA is a key virulence regulator for (Lm) responding to host environment. Here we report that the natural mutation in PrfA enhanced the pathogenicity of hypervirulent serotype 4h . We characterized the phylogenetic tree of PrfA, and found that PrfA prevalently distributed in all serotype 4h isolates.
View Article and Find Full Text PDFPrev Nutr Food Sci
December 2024
Department of Food and Nutrition, Sunchon National University, Suncheon 57922, Korea.
Inflammatory bowel disease, including Crohn's disease and ulcerative colitis, poses an emerging threat as it can lead to colorectal cancer, thrombosis, and other chronic conditions. The present study demonstrated the protective effects of peanut sprout extracts (PSEs) prepared from day 2 to day 7 of germination against lipopolysaccharide (LPS)-induced epithelial barrier breakdown. Although the peanut sprout length increased in a time-dependent manner from day 1 to day 7, the extraction yields remained relatively consistent from day 2 to day 7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!